
BINOMIAL, POISSON,
AND NORMAL MODELS

BST228 Applied Bayesian Analysis
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RECAP
Binomial likelihood with beta prior.
Poisson likelihood with gamma prior.
Posterior predictive distribution.

Binomial likelihood for # events
in finite population (North
Carolina low birth weight;
Warfarin complications).
Beta prior is conjugate; we can
derive posterior in closed form.
Poisson likelihood # events with
given rate (Prussian soldiers
kicked by horses & hospital
admissions).
Gamma prior is conjugate.
Why are these different?

Babies either have low birth
weight or not; soldiers can
be kicked a lot.
Poisson to binomial: 3 of
104 soldiers were kicked.
Binomial to Poisson: 17
babies with LBW born.

Posterior predictive is
distribution of future outcomes
given observed outcomes.

Extra uncertainty compared
with MLE is important,
especially for small sample
sizes.
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OUTLINE
Wrap up Poisson and binomial models.
Why non-informative priors are o�en informative.
Normal model as a two-parameter distribution.

Wrap up count outcomes by
considering another examples
with binomial or Poisson
likelihood: asthma mortality
rates. Sometimes choosing the
right model is not
straightforward.
Sometimes uninformative priors
are quite informative depending
on the parameterization of the
model.
Normal model has two
parameters: location and scale.
It is the fundamental building
block of most hierarchical
models (random effects for
between-subject variability, time
series models, least-squares
regression, Gaussian processes,
…).
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ASTHMA MORTALITY
In a city of ,  people died of asthma in

2018.
n = 200, 000 y = 3

What is an appropriate likelihood
for this problem? Raise hands
for binomial, Poisson, another
likelihood.
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ASTHMA MORTALITY
What is the probability to die

of asthma in a given year?

➡  likelihood.

What is the rate at which
people die of asthma?

➡  likelihood.Binomial Poisson

Data may not be enough to tell
us about the appropriate model.
The model also depends on the
question we want to answer.
Formulating a model is a science
but also sometimes an art.
Incorporating your and your
collaborators’ experience and
domain knowledge is essential
for building “good” models.
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DERIVATION OF POSTERIOR FOR BINOMIAL LIKELIHOOD
We have the binomial likelihood and conjugate beta prior with hyperparameters  and  such that

where  is a normalization constant. Neglecting constants in , the posterior is

which has the kernel of a beta distribution. The posterior is thus a beta distribution with updated parameters 
 and .

a  0 b  0
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=  θ 1 − θ(
y

n
) y ( )n−y

=  ,
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PAIRED EXERCISE
Identify values for hyperparameters  and .
Obtain posterior parameters for  and .
Sample from the posterior and estimate posterior mean
using R.

a  0 b  0

n = 200,000 y = 3

Work with your partner and put
one of the distributed post-it
notes on your laptop when
you’ve finished.
Upon completion, collect a few
answers from students.
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> # Declare the data and prior hyperparameters.1

> y <- 32

> n <- 2000003

> a_0 <- 14

> b_0 <- 15

> # Evaluate posterior parameters.6

> a_n <- a_0 + y7

> b_n <- b_0 + n - y8

> # Sample and report posterior mean.9

> beta_samples <- rbeta(1000, a_n, b_n)10

> mean(beta_samples)11

[1] 1.974689e-0512

> 13

Lines #2-3 declare the data, #4-
5 the hyperparameters.
#7-8 evaluate the parameters of
the posterior distribution. This
step is only feasible because we
have used a conjugate prior.
#10-11 draw 1,000 samples from
the posterior and evaluate the
posterior mean.
Compare responses from
students with reference
implementation. Why might they
differ? Different prior choices,
implementation differences?
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Because we used a conjugate
prior, we can plot the posterior in
closed form.
Posterior is consistent with our
expectations and is concentrated
around the MLE 

.
Posterior is right-skewed
because mortality is bounded
below.
We next consider the same
procedure (derive posterior
parameters, sample from
posterior, inspect posterior) for
the Poisson likelihood with rate
parameter .
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DERIVATION OF POSTERIOR FOR POISSON LIKELIHOOD
We have the Poisson likelihood and conjugate gamma prior

We used  as the rate for the likelihood because we are interested in the per-capita mortality . Neglecting constants in
, the posterior is

which has the kernel of a gamma distribution. The posterior is thus a gamma distribution with updated parameters 
 and .

  

p y ∣ θ,n( )

p θ( )

=  

y!
nθ exp −nθ( )y ( )

= θ exp −b  θ .a  −10 ( 0 )

nθ θ

θ

p θ ∣ y,n, a  , b  ∝( 0 0) θ exp − b  + n θa  +y−10 ( [ 0 ] )

a  =n

a  +0 y b  =n b  +0 n
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PAIRED EXERCISE
Identify values for hyperparameters  and .
Obtain posterior parameters for  and .
Sample from the posterior and estimate posterior mean.
How does this compare with inference using the binomial
likelihood?

a  0 b  0

n = 200,000 y = 3

Work with your partner and put
one of the distributed post-it
notes on your laptop when
you’ve finished.
Upon completion, collect a few
answers from students. How do
these observations differ from
our estimates using the binomial
likelihood?
Why do they differ? Did we use
different priors? Is it even
meaningful to compare the
probability  with the rate  given
they have different support?
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> # Declare the data and prior hyperparameters.1

> y <- 32

> n <- 2000003

> a_0 <- 0.0014

> b_0 <- 0.0015

> # Evaluate posterior parameters.6

> a_n <- a_0 + y7

> b_n <- b_0 + n8

> # Sample and report posterior mean.9

> gamma_samples <- rgamma(1000, a_n, b_n)10

> mean(gamma_samples)11

[1] 1.448339e-0512

> 13

Lines #2-5 declare data and
hyperparameters again.
#7-8 evaluate parameters of the
posterior.
#10-11 draw posterior samples
and evaluate posterior mean.
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The posterior using the Poisson
likelihood looks very similar and
is also consistent with the MLE.
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Comparing the two posteriors,
they look quite different.
Beta-binomial model: 

.
Gamma-Poisson model: 

.
Posterior mean under beta-
binomial model is more than
30% larger than under gamma-
Poisson model.
❓ Why is that?
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Let’s look at the priors; they are
very different.
Gamma prior suggests that we
think the mortality is very small.
Beta prior suggests that we think
80% of the population dying is
just as likely as 0.1%.
But they are both
“uninformative”. What do we
mean by that?
Really just that the posterior is
dominated by the likelihood.
It does not mean that the prior is
uninformative in an intuitive
sense.
❓ Which is “better”?
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> # Probability that theta < 1e-6 for beta prior1

> # with a = b = 1.2

> pbeta(1e-6, 1, 1)3

[1] 1e-064

> # Probability that theta < 1e-6 for gamma prior5

> # with a = b = 0.001.6

> pgamma(1e-6, 1e-3, 1e-3)7

[1] 0.98005478

> 9

Let’s formalize the difference by
using the p[distribution 
name]  function in R to evaluate
the cumulative distribution
function of each prior.
For the flat beta prior, we believe
that the mortality is under 
with probability .
For the gamma prior, we believe
that the mortality is under 
with probability .
These are wildly different prior
beliefs leading to different
posteriors.
❓ Which is better?
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WEAKLY INFORMATIVE PRIOR
Chose parameters  and  such that

and .

a b

p θ < 10 =( −6) 0.025
p θ < 10 =( −3) 0.975

Weakly informative priors can
better encode our intuition and
avoid implicit prior assumptions
that affect the posterior.
One approach to define a weakly
informative prior is to match
quantiles of the prior to
reasonable values.
Here, we declare that we are
pretty confident that mortality is
higher than $10^{-6}`. For lower
mortalities, we might not see any
deaths even in a city five times
larger.
Likewise, we’re pretty confident
that mortality is smaller than

. In our city, we’d expect to
observe 200 deaths at that level.
❓ What do you expect the two
priors to look like?
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PRIOR HYPERPARAMETERS FROM QUANTILES
Given two parameter values  we seek hyperparameters  and  such that  and

, where  is the cumulative distribution function of the prior and . Closed form
solutions to this system of equations are not generally available. We can obtain the desired parameters by optimization:

See weakly_informative_priors.R  on Canvas for an example implementation.

θ  <1 θ  2 a∗ b∗ f θ  ∣ a, b =( 1 ) q  1

f θ  ∣ a, b =( 2 ) q  2 f 0 < q  <1 q  <2 1

a , b =( ∗ ∗) argmin  f θ  ∣ a, b − q  + f θ  ∣ a, b − q  .a,b [( ( 1 ) 1)2 ( ( 2 ) 2)2]
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The two weakly informative
priors are very similar even
though one is a beta distribution
and the other a gamma
distribution.
Intuitively, this makes sense
because both binomial and
Poisson models are suitable
models for the data.
The two “non-informative” priors
are shown as semi-transparent
lines for reference.

Speaker notes

19 /  31



Using these priors, the
posteriors are also
indistinguishable.
We have been able to resolve
this conundrum by taking a
formal Bayesian approach and
explicitly declaring our priors.
At , the posterior
means are a compromise
between the two posterior
means we obtained using “non-
informative” priors. The
posteriors remain consistent with
the MLE of .
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RECAP
Models depend on both data and the scientific question.
Binomial and Poisson likelihoods have convenient
conjugate priors.
Non-informative priors are informative.
Explicit prior elicitation can expose implicit assumptions.

No notes on this slide.
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NORMAL MODELS

Normal models are not just
another model. They are the
fundamental building blocks of
many hierarchical models, state
space models, and Gaussian
processes for non-parametric
regression.
They can be reasonable even for
complex data if they’re averages
due to central limit theorem.
We implicitly use normal models
whenever we use least-squares
regression.
Depending on the priors for
regression parameters, ridge
regression and the LASSO arise
naturally from regression with
normal observation errors.
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NORMAL LIKELIHOOD (1 / 2)
The likelihood for mean  and scale  isμ σ

p y ∣ μ,σ =( )  exp −  .
 2πσ2

1
(

2σ2

y − μ( )2

)

Normal models have two
parameters: location and scale.
One encodes where the
distribution is centered, the other
how dispersed it is.
We will first infer each parameter
assuming the other is known and
then consider the common
scenario where both are
unknown.
Norma models have light tails
because the density decays as
exponential of squared distance.
This means they are not robust
to outliers–just like least squares
regression.
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NORMAL LIKELIHOOD (2 / 2)
Algebra is much easier using the precision , yieldingτ = σ−2

p y ∣ μ, τ =( )  exp −  . 

2π
τ

(
2

τ y − μ( )2

)

The precision  is just what it
sounds like. It encodes how
precisely observations  follow
the location parameter .
In an inference setting, 
quantifies how precisely data
can inform the location
parameter .
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Figure shows examples of
normal densities with different
parameters.
Higher precision means more
concentrated densities.
Blue is the standard normal
distribution (i.e., zero mean, unit
variance).
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INDEPENDENT OBSERVATIONS
For  independent observations , the likelihood isn y

p y ∣ μ, τ =( )  exp −  .(
2π
τ

)
n/2

(
2

τ  y  − μ∑i=1
n ( i )2

)

We use lower-case bold font to
denote a vector.
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DERIVATION OF NORMAL LIKELIHOOD FOR I.I.D. OBSERVATIONS
The likelihood of  i.i.d. observations is the product of individual likelihoods

The  term does not depend on the index  and contributes a constant . We express the product of
exponentials as the exponential of a sum to obtain

💡 Working with log probabilities is o�en preferable to working with probabilities directly. The latter can lead to
 due to multiplication of many small and large numbers, respectively.

n

p y ∣ μ, τ =( )   exp −  

i=1

∏
n

 

2π
τ

(
2

τ y  − μ( i )2

)

  2π
τ i  ( 2π

τ )
n/2

p y ∣ μ, τ =( )  exp −  .(
2π
τ

)
n/2

(
2

τ  y  − μ∑
i=1
n ( i )2

)

underflows and overflows

No notes on this slide.
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INFERRING  FOR KNOWN μ τ

We may want to infer the
concentration  of a chemical
with an instrument with known
precision , e.g., the instrument
manufacturer may provide the
measurement error.
To make analytic progress with
inference, we next derive the
conjugate prior for the location
parameter .
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KERNEL FOR  UNDER NORMAL LIKELIHOOD WITH KNOWN 

Consider the posterior (neglecting constants in )

where we have expanded the square in the second line. We drop the  term and distribute the sum to obtain

where  is the sample mean.

💡 The quadratic form in the exponential looks suspiciously like the kernel of a normal distribution in , and we use a
normal prior to derive the posterior.

μ τ

μ

  

p μ ∣ y, τ( ) ∝ p μ exp −
 

,( ) (
2

τ  y  − μ∑
i=1
n ( i )2

)

∝ p μ exp −   y  − 2μy  + μ ,( ) (
2
τ

i=1

∑
n

( i
2

i
2))

y  i
2

p μ ∣ y, τ ∝( ) p μ exp −  μ − 2μ  ,( ) (
2
nτ

( 2 ȳ))

 =ȳ n  y  

−1 ∑i=1
n

i

μ
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POSTERIOR FOR  UNDER NORMAL LIKELIHOOD WITH KNOWN 

The posterior given a normal prior  with prior mean  and precision  is

where we have expanded the square in the exponential of the prior. Combining the exponentials and collecting terms in 
and  yields

Comparing with the functional form of a normal distribution, we find that the posterior has mean  and
precision .

μ τ

p μ ∣ ν  ,κ  ( 0 0) μ  0 κ  0

p μ ∣ y, τ ∝( ) exp −  μ − 2μν  exp −  μ − 2μ  ,(
2
κ  0 ( 2

0)) (
2
nτ

( 2 ȳ))

μ

μ2

  

p μ ∣ y, τ( ) ∝ exp −  (
2

(κ  + nτ)μ − 2μ(κ  ν + nτ  )0
2

0 0 ȳ
)

∝ exp −  μ − 2μ  
.(

2
κ  + nτ0 ( 2

nτ + κ  0

κ  ν  + nτ  0 0 ȳ
))

ν  =n  

κ  +nτ0

κ  ν  +nτ  0 0 ȳ

κ  =n κ  +0 nτ
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Update rules for  posterior parameters for known precision
are

μ

  

ν  n

κ  n

=  ,
κ  + nτ0

κ  ν  + nτ  0 0 ȳ

= κ  + nτ .0

The posterior mean  is the
average of the prior mean  and
sample mean  weighted by the
prior and likelihood precisions.
The more data we observe
(increasing ) or the more
precise the observations
(increasing ), the closer the
posterior mean is to the sample
mean.
For large , the posterior
variance , and we
recover the familiar square-root
scaling of the standard error.
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