
NORMAL AND
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RECAP
Finalized binomial and Poisson models, including prior
sensitivity.
Derived normal likelihood for i.i.d. observations.
Posterior for location parameter  given data  and
known precision  (almost!).
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OUTLINE
Method for estimating hyperparameters for weakly
informative priors.
Posterior for location parameter  given data and known
precision .
Posterior for precision parameter  given data and known
location .
Joint inference and marginal distributions.
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> # Declare the target quantiles and values.1

> limits <- c(1e-6, 1e-3)2

> qs <- c(0.025, 0.975)3

> # Find and report parameters.4

> result <- optim(5

+   c(0, 0),6

+   function(par) {7

+     par <- exp(par)8

+     residuals <- pbeta(limits, par[1], par[2]) -9

+       qs10

+     sum(residuals^2)11

+   },12

+ )13

> exp(result$par)14

[1]    0.6487655 2897.566847315

> 16

Lines #2-3 declare the quantiles
of the prior and quantile values.
The optim  function performs
the optimization starting at the
vector of zeros in #6.
#7-11 evaluate the mean
squared error between targets
qs  and actual CDF values
evaluated at limits . #8
applies an exp  transform to
ensure parameters of the beta
distribution are positive. This is
required because optim
operates without constraints.
#15 reports the optimized
values, applying exp  for
consistency with the
optimization.
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POSTERIOR FOR  UNDER NORMAL LIKELIHOOD WITH KNOWN 

The posterior given a normal prior  with prior mean  and precision  is

where we have expanded the square in the exponential of the prior. Combining the exponentials and collecting terms in 
and  yields

Comparing with the functional form of a normal distribution, we find that the posterior has mean  and
precision .
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Update rules for parameters of posterior on  given known
precision  are
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= κ ​ + nτ .0

The posterior mean  is the
average of the prior mean  and
sample mean  weighted by the
prior and likelihood precisions.
The more data we observe
(increasing ) or the more
precise the observations
(increasing ), the closer the
posterior mean is to the sample
mean.
For large , the posterior
variance , and we
recover the familiar square-root
scaling of the standard error.
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Update rules with likelihood scale  and prior scale  are

much more tedious than using precision instead of scale.
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I claimed without evidence that
parameterizing the normal
distribution using a precision
instead of scale parameter was
nicer.
The parameter update rules

using prior scale  and
likelihood scale  are
messier and less interpretable.
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PAIRED EXERCISE
An instrument with known measurement noise 
yields replicates  for a chemical

concentration.

What is the posterior mean and standard deviation?
What hyperparameters did you use?
What issues might arise due to using a normal model?
How significant are these issues? How would your answer
change for .

σ = 0.1
y = 2.1, 2.5, 1.6, 1.7( )

y = 0.1, 0.2, 0.1( )
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> # Declare data and known noise level.1

> y <- c(2.1, 2.5, 1.6, 1.7)2

> sigma <- 0.13

> # Define hyperparameters.4

> nu_0 <- 05

> kappa_0 <- 1e-46

> # Update parameters and sample.7

> n <- length(y)8

> y_bar <- mean(y)9

> tau <- 1 / sigma ^ 210

> kappa_n <- kappa_0 + n * tau11

> nu_n <- (n * tau * y_bar + kappa_0 * nu_0) /12

+   (kappa_0 + n * tau)13

> mu_samples <- rnorm(1000, nu_n, 1 / sqrt(kappa_n))14

> # Report summary statistics.15

> c(mean(mu_samples), sd(mu_samples))16

[1] 1.97701148 0.0508284117

> 18

Lines #2-3 declare the data; #5-
6 declare hyperparameters.
#8-13 evaluate the posterior
parameters.
#14 draws posterior samples,
and #16 reports the posterior
mean.
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RECAP
Normal likelihood is one of the most commonly used
distributions.
For known , we derived a conjugate prior and parameter
update rules for .
We combined evidence from multiple independent
observations.
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POSTERIOR FOR  UNDER NORMAL LIKELIHOOD WITH KNOWN 
Consider the posterior

where . The kernel matches a gamma distribution, and we use a gamma prior 
. Collecting terms yields

and the posterior is .
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Update rules for  posterior parameters given known mean
 are
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We can verify that, in the large
sample limit, the posterior mean

is ,

i.e., the inverse sample variance.
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PAIRED EXERCISE
A sample has known chemical concentration  and

measurements are as before, i.e., .

What is the posterior mean and variance?
What hyperparameters did you use?
Is the inferred precision consistent with  from
before?

μ = 2
y = 2.1, 2.5, 1.6, 1.7( )

σ = 0.1
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> # Declare data.1

> y <- c(2.1, 2.5, 1.6, 1.7)2

> n <- length(y)3

> mu <- 24

> # Hyperparameters.5

> a_0 <- 0.0016

> b_0 <- 0.0017

> # Update and sample8

> a_n <- a_0 + n / 29

> b_n <- b_0 + sum((y - mu) ^ 2) / 210

> tau_samples <- rgamma(1000, a_n, b_n)11

> c(mean(tau_samples), sd(tau_samples))12

[1] 8.005844 5.59159613

> # Compare with reported noise level.14

> sigma_samples <- 1 / sqrt(tau_samples)15

> c(mean(sigma_samples), sd(sigma_samples),16

+   mean(sigma_samples < 0.1))17

[1] 0.440847 0.221100 0.00000018

> 19

Lines #2-4 declare data and
known mean.
#6-7 declare hyperparameters.
#9-12 evaluate posterior
parameters, sample, and report
posterior mean.
#15 transforms precision
samples to scale samples.
#16 reports posterior mean,
standard deviation, and the
fraction of scale samples that
are smaller than the noise scale
reported by the instrument
manufacturer.
All posterior samples of 
exceed the reported noise scale,
suggesting that the manufacturer
overstated the precision of their
instrument.
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The tension between reported
and inferred observation noise
scale is obvious from a
histogram of posterior samples.
This exemplifies why we often
want to infer parameter jointly,
i.e., location parameter  and
precision  at the same time.
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RECAP
Conjugate prior for precision of normal likelihood with
known mean is gamma.
Inverse gamma on the variance is an alternative prior.
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