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NORMAL AND
MULTIVARIATE MODELS

BST228 Applied Bayesian Analysis



Speaker notes

RECAP

e Finalized binomial and Poisson models, including prior
sensitivity.

e Derived normal likelihood for i.i.d. observations.

e Posterior for location parameter i given data y and

Known precision 7 (almost!).



OUTLINE

Method for estimating hyperparameters for weakly
informative priors.

Posterior for location parameter i given data and known
orecision 7.
Posterior for precision parameter 7 given data and known

ocation L.
Joint inference and marginal distributions.
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« Lines #2-3 declare the quantiles
of the prior and quantile values.
o The optim function performs

> # Declare the target quantiles and values. S .
the optimization starting at the

> limits <- c(le-6, le-3) vector of zeros in #6.
> QS <- C(0.025, 0.975) « #7-11 evaluate the mean
> # Find and report parameters. squared error between targets
> result <- optim( gqs and actual CDF values
evaluated at 1imits . #8

i C (0 ! 0) ! applies an exp transform to
+ function(par) { ensure parameters of the beta
+ par <- exp(par) distribution are positive. This is
- residuals <- pbeta(limits, par[l], par[2]) - requIredibecatse (R
+ gs operates without constraints.

. o #15 reports the optimized
+ sum(residuals”2) values, applying exp for
+ } , consistency with the
+ ) optimization.

> exp(result$par)
[1] 0.6487655 2897.5668473

>



POSTERIOR FOR 1t UNDER NORMAL LIKELIHOOD WITH KNOWN 7

The posterior given a normal prior p (i | vy, ko) with prior mean v and precision kg is
K nt _
p(u|y,T) o< exp (—7 (u* - 2#1/0)) exp (—7 (W - 2#3/)) :

where we have expanded the square in the exponential of the prior. Combining the exponentials and collecting termsin u

and p? yields

2 _ 9 B
p(ply,T) ocexp (— (Ko + n7)pt 2#("601/0 + m'y))

o ex _/<.:0—|—n7' 2 _ o KoYy + NTY
P 2 H H nT + Ko '
_ KoY+ nTy and

Comparing with the functional form of a normal distribution, we find that the posterior has mean v, = ="~

precision kK, = Ko + nT.
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Update rules for parameters of posterior on u given known

Un

precision T are

Koy + NTY

nNT +— Ko
Ko + NT.

Y

Speaker notes

e The posterior mean v, is the

average of the prior mean v, and
sample mean y weighted by the
prior and likelihood precisions.
The more data we observe
(increasing n) or the more
precise the observations
(increasing 7), the closer the
posterior mean is to the sample
mean.

For large n, the posterior
variance k! oc n~1, and we
recover the familiar square-root
scaling of the standard error.



Update rules with likelihood scale o and prior scale pg are

ny 0

_ o p
Un = n 17
o2 I

much more tedious than using precision instead of scale.

Speaker notes

« | claimed without evidence that

parameterizing the normal
distribution using a precision
instead of scale parameter was
nicer.

« The parameter update rules

: . ~1/2
using prior scale py = K /2 and

likelihood scale o = 7~ /2 are
messier and less interpretable.



PAIRED EXERCISE

An instrument with known measurement noise o = 0.1

yields replicatesy = (2.1, 2.5, 1.6, 1.7) for a chemical
concentration.

What is the posterior mean and standard deviation?
What hyperparameters did you use?

What issues might arise due to using a normal model?
How significant are these issues? How would your answer

change fory = (0.1,0.2,0.1).
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# Declare data and known noise level.

y <- ¢(2.1, 2.5, 1.6, 1.7)

sigma <- 0.1

# Define hyperparameters.

nu 0 <- 0

kappa 0 <- le-4

# Update parameters and sample.

n <- length(y)

y bar <- mean(y)

tau <- 1 / sigma ©~ 2

kappa n <- kappa 0 + n * tau

nun-<- (n*tau * vy bar + kappa 0 * nu 0) /
(kappa 0 + n * tau)

mu samples <- rnorm(1000, nu n, 1 / sqrt(kappa n))

# Report summary statistics.

c(mean(mu samples), sd(mu samples))

1] 1.97701148 0.05082841

Speaker notes

« Lines #2-3 declare the data; #5-
6 declare hyperparameters.

« #8-13 evaluate the posterior
parameters.

o #14 draws posterior samples,
and #16 reports the posterior
mean.



Speaker notes

RECAP

e Normal likelihood is one of the most commonly used
distributions.

e For known 7, we derived a conjugate prior and parameter
update rules for u.

e We combined evidence from multiple independent
observations.
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POSTERIOR FOR 7 UNDER NORMAL LIKELIHOOD WITH KNOWN 1

Consider the posterior

p(T|y,p) xp(r) (%)m exp (—% Z (yi — #)2>
78

crteyrrens (25),

where S = 3" | (y; — u)”. The kernel matches a gamma distribution, and we use a gamma prior 7 ~ Gamma (ag, b)
. Collecting terms yields

p(T|y,p) oc 72 Lexp (—T (bo — g)) :

and the posterioris 6 | y, u ~ Gamma (ao + 5,bo + g)
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« We can verify that, in the large
sample limit, the posterior mean

is = = {% > (i — u)z]

I.e., the inverse sample variance.

Update rules for 7 posterior parameters given known mean

(L are
n
an, = ag + 57

bo + >

S
S
|
DN |
{1
~~
S
|
=
~—
DO



Speaker notes

PAIRED EXERCISE

A sample has known chemical concentration u = 2 and
measurements are as before,i.e.,y = (2.1, 2.5,1.6, 1.7).

e What is the posterior mean and variance?
e What hyperparameters did you use?

e Isthe inferred precision consistent with o = 0.1 from
before?



Speaker notes

e Lines #2-4 declare data and

> # Declare data. NS,
>y <-C ( 2.1 ’ 2.5 ’ 1.6 ’ 1. 7) o #6-7 declare hyperparameters.
> N <- lengt h (y) o #9-12 evaluate posterior
> mu <- 2 parameters, sample, and report
# H - posterior mean.
- VBB E EE 2 « #15 transforms precision
> a_O <- 0.001 samples to scale samples.
> b 0 <- 0.001 « #16 reports posterior mean,
> # Upda te and sample stan(.jard deviation, and the
0 / 2 fraction of scale samples that

- a_ N <-abv+n are smaller than the noise scale
>bn<-Db0O+ sum((y - mu) ©~ 2) / 2 reported by the instrument
> tau samples <- rgamma(1000, a n, b n) manufacturer.
> c(mean(tau_samples), sd(tau_samples)) r Alposienorsampiesole

— — exceed the reported noise scale,
[ 1] 8.005844 5 -591596 ) suggesting that the manufacturer
> # Compa re with reported noise level. overstated the precision of their
> sigma samples <- 1 / sqrt(tau samples) instrument.

> c(mean(sigma samples), sd(sigma samples),
+ mean(sigma samples < 0.1))
[1] 0.440847 0.221100 0.000000

>



posterior p(o | y, U, ag, bo)

10°
likelihood scale o

Speaker notes

« The tension between reported
and inferred observation noise
scale is obvious from a
histogram of posterior samples.

« This exemplifies why we often
want to infer parameter jointly,
I.e., location parameter u and
precision T at the same time.



Speaker notes

RECAP

e Conjugate prior for precision of normal likelihood with
known mean is gamma.
e Inverse gamma on the variance is an alternative prior.



