JOINT INFERENCE

BST228 Applied Bayesian Analysis

Speaker notes



RECAP

e Inference of location i given datay and precision 7.
e Inference of precision 7 given data y and location .

Speaker notes

« We considered univariate

inferences, assuming one of the
parameters was known.

The natural next step is to infer
both parameters together.

In the instrument manufacturer
example, we may want to jointly
estimate the concentration of a
marker in a sample and the
measurement error by running
replicates. This means we do not
need to rely on the reported
precision of the instrument.



JOINT INFERENCE IN THEORY

Speaker notes

« We often do not know any of the

parameters of our model and
need to infer them jointly.

This includes hierarchical
models, regression, non-
parametric models, etc.

Bayes theorem remains
unchanged for multivariate
inference, interpretation of prior,
likelihood, and posterior stay the
same.

However, priors and posteriors
are now multivariate distributions
which require careful analysis.



Speaker notes

« We need to handle high-
distributions in g dimensions
which can be both
computationally and
conceptually challenging.

« We often report summaries of

JOINT INFERENCE IN PRACTICE detons for caen ofhe

parameters (see next slide).

We have posterior

pO@|y)=p(01,...,0, | ¥)

for g parameters.



Speaker notes

JOINT AND MARGINAL DISTRIBUTIONS

For a two-parameter posterior, by the law of total probability,

(6 |y) = /dezpwl,ez 'y)

:/d92p(01 | 027Y)p(92 ’y)

The marginal posterior p (61 | y) is an average of the conditional posterior p (61 | 62, y) weighted by the marginal

posterior p (02 | y). Here, 65 is a nuisance variable that is not of primary concern. The integral is referred to as
marginalization.
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« The distribution of likely
concentrations is what we are
ultimately interested in.

« We thus marginalize with respect
to the instrument precision, and
the precision 7 is a nuisance
parameter.

MARGINAL DISTRIBUTION EXAMPLE - suetrevecan v
marginal posterior, we need to
obtain the joint posterior.

The marginal posterior chemical concentration is

p(MY)Z/dTp(u,T\y)-



JOINT POSTERIOR FOR NORMAL DATA

The joint posterior is

p(u,7|y) xp(u,7)p(y | pT)
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We use a prior ansatz 7 ~ Gamma (ayg, by) and g ~ Normal (1/0, Ki—T) such that
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where s = Z?:l % is the second moment of the sample. We note a,, = ay + % and consider the term in brackets, which

we call L.

Speaker notes

« Deriving the joint posterior is

tedious but a worthwhile
exercise.

This derivation is the most fiddly
algebra of the course, but |
encourage you to verify the
derivation in your own time.
Using samplers to explore the
posterior (see later lectures)
allows us to side-step these
derivations.

Aside: Bayes had a bit of a
revival starting in the late 90s
because computational statistics
became feasible.
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JOINT POSTERIOR FOR NORMAL DATA

L:bo—i—%(,ﬁ—zuvo—l—z/g)—|—g(s—2,u37—|—,u2)

1
= by + 3 (/a:o,uz — 2K uvy + /{01/3 + ns — 2nuy + nu2)

ko+mn [ Kol + Ny  KoVs +ns
=b -2
0+ 2 (IJ Ko +mn * Ko +mn
_ —\ 2 _\ 2 2
Ko+ 1N Koy + N Koo + 1 Koo + 1 Koy + ns
_ 4 0 <#2_2#M+(M) _<Ly) +00_>
2 Ko + 1 Ko + 1 Ko + 1 Ko+ 1
Ko +n kovo + g\~ ko+n [ KorE +ns Kovo + 17\
= by + w——-1 + — | —= .
2 Ko+ n 2 Ko+ 1n Ko+ n

Wenote kK, = kg + nand vy, = %ﬂ We further consider the first and last terms which is b,,.
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JOINT POSTERIOR FOR NORMAL DATA
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UPDATE RULES
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Speaker notes

« We derived four update rules for

the posterior parameters, but the
approach quickly becomes
infeasible for more complex
models.

We have the joint posterior, and
we can evaluate the marginal
posterior distribution.

In your own time, consider the
limiting cases of large
observation precision 7 — o0,
large sample size n — oo, and
large prior precision Ky — oo.
Do the limiting cases agree with
your intuition?
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# Define some random variables with correct support. « Using R or another programming

n <-7 language can be a convenient
y <- rnorm(n) s s way to verify algebraic
tau <- rgamma(l, 5, 5) manipulation by evaluating the

mu <- rnorm(1) . .
nu 0 <- rnorm(1) manipulated expressions at

kappa 0 <- rgamma(l, 5, 5) some arbitrary values.
a 0 <- rgamma(l, 5, 5)
b 0 <- rgamma(l, 5, 5)

reference <- dnorm(mu, mean = nu 0, sd = 1 / sqrt(kappa 0 * tau),
log = TRUE) + dgamma(tau, shape = a 0, rate = b 0, log = TRUE) +
sum(dnorm(y, mean = mu, sd = 1 / sqrt(tau), log = TRUE))
print(paste("reference", reference))
1] "reference -14.8945129997231"

# Replace distributions by explicit values.

test value <- log(kappa 0 * tau / (2 * pi)) / 2 - kappa O * tau / 2 *
(mu - nu©0)"2 + a 0 * log(b 0) - lgamma(a 0) + (a 0 - 1) * log(tau) -
b O * tau + n * log(tau / (2 * pi)) / 2 - tau / 2 * sum((y - mu)”2)

stopifnot(all.equal(test value, reference))

# Group terms and introduce a normalization constant to absorb terms.
evaluate log norm <- function(n, kappa, a, b) {
return(
(log(kappa) - (n + 1) * log(2 * pi)) / 2 +
a * log(b) - lgamma(a)

)

+ ++++VVVVV++YVVV~—V ++ VYV VYV VYV VYV VVYV
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MARGINAL POSTERIOR FOR

Recall
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where {vy, Kn, an, by, } are posterior parameters. The integrand is the kernel of a gamma distribution with effective
parameters.

a =a +1
=an+ 3
2
gy )’

2



Speaker notes

MARGINAL POSTERIOR FOR

The integral thus evaluates to the inverse normalization constant F(a’)b’_“/, and
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where we have absorbed a factor of b,, in the normalization constant and added a factor a,, to nominator and
denominator. We compare the expression with the kernel of a non-centered, scaled Student’s t-distribution

<1+ f~z(u—1/)2)T
q

with g degrees of freedom, location v, and precision k.


https://en.wikipedia.org/wiki/Student%27s_t-distribution
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MARGINAL POSTERIOR FOR

Matching terms, we have a non-centered, scaled Student’s t-distribution with 2a,, degrees of freedom. The marginal
posterior is

KnQn

bn,
i |y ~ StudentTs, (l/n, ) :

14 | 17


https://en.wikipedia.org/wiki/Student%27s_t-distribution

posterior density p{u | y)

Speaker notes

« The distribution, here shown for
v, = 0 has heaver tails than a
normal distribution with the same
parameters. However, even for

0-407 relatively small sample size of

035 n = 50, the Student’s t-
distribution closely approximates

0.30 - a normal distribution.

« This extra variance in the

0.25 4 posterior for the chemical
concentration is expected

0207 because we must also infer the

0.15 4 observation precision given
replicate measurements.

0.10 -

0.05 -

0.00 -

-4 -2 0 2 4
location parameter u



PAIRED EXERCISE
Consider again the example datay = (2.1, 2.5,1.6, 1.7).

e Using the derived update rules, what are the posterior
parameters?

e Draw posterior samples of u? Can you think of two ways
to obtain the samples?

e How do summary statistics of the posterior for and 7
compare with inference assuming one known parameter?

Speaker notes



Ve—+V VVV+VVVVVYVYVVVYVYVYVYV

# Declare data and known noise level.
y <- c(2.1, 2.5, 1.6, 1.7)

n <- length(y)

# Define hyperparameters.

nu 0 <- 0
kappa 0 <- le-4
a0 <- le-3

b 0 <- le-3

# Update parameters and sample.

nun <- (nu 0 * kappa 0 + n * mean(y)) / (kappa 0 + n)

kappa n <- kappa 0 + n

an<-a0+n/?2

bn<-b0+n/2* (var(y) *n / (n - 1) + kappa 0 / (kappa 0 + n)

* (mean(y) - nu 0) ** 2)

tau samples <- rgamma (1000, a n, b n)

sigma samples <- 1 / sqrt(tau samples)

mu_samples <- rnorm(1000, nu n, 1 / sqrt(kappa n * tau samples))

c(mean(mu_samples), sd(mu samples),
mean(sigma samples), sd(sigma samples))

1] 1.9708200 0.3235266 0.6033182 0.3464679
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e Lines #2-3 declare data and #5-
8 declare hyperparameters.

o #10-14 evaluate the posterior
parameters.

o #15-17 sample from the
posterior in two steps.
Alternatively, we could have
directly sampled from a
Student’s t-distribution.



