No notes on this slide.

JOINT INFERENCE

BST228 Applied Bayesian Analysis

RECAP

- Inference of location μ given data ${f y}$ and precision au.
- Inference of precision au given data \mathbf{y} and location μ .

- We considered univariate inferences, assuming one of the parameters was known.
- The natural next step is to infer both parameters together.
- In the instrument manufacturer example, we may want to jointly estimate the concentration of a marker in a sample and the measurement error by running replicates. This means we do not need to rely on the reported precision of the instrument.

JOINT INFERENCE IN THEORY

$$p\left(oldsymbol{ heta} \mid \mathbf{y}
ight) = rac{p\left(\mathbf{y} \mid oldsymbol{ heta}
ight)p\left(oldsymbol{ heta}
ight)}{p\left(\mathbf{y}
ight)}$$

- We often do not know any of the parameters of our model and need to infer them jointly.
- This includes hierarchical models, regression, non-parametric models, etc.
- Bayes theorem remains unchanged for multivariate inference, interpretation of prior, likelihood, and posterior stay the same.
- However, priors and posteriors are now multivariate distributions which require careful analysis.

JOINT INFERENCE IN PRACTICE

We have posterior

$$p\left(oldsymbol{ heta} \mid \mathbf{y}
ight) = p\left(heta_1, \dots, heta_q \mid \mathbf{y}
ight)$$

for q parameters.

- We need to handle highdistributions in q dimensions which can be both computationally and conceptually challenging.
- We often report summaries of the posterior, such as marginal distributions for each of he parameters (see next slide).

No notes on this slide.

JOINT AND MARGINAL DISTRIBUTIONS

For a two-parameter posterior, by the law of total probability,

$$egin{aligned} p\left(heta_1 \mid \mathbf{y}
ight) &= \int d heta_2 \, p\left(heta_1, heta_2 \mid \mathbf{y}
ight) \ &= \int d heta_2 \, p\left(heta_1 \mid heta_2, \mathbf{y}
ight) p\left(heta_2 \mid \mathbf{y}
ight) \end{aligned}$$

.

The marginal posterior $p(\theta_1 | \mathbf{y})$ is an average of the conditional posterior $p(\theta_1 | \theta_2, \mathbf{y})$ weighted by the marginal posterior $p(\theta_2 | \mathbf{y})$. Here, θ_2 is a nuisance variable that is not of primary concern. The integral is referred to as marginalization.

MARGINAL DISTRIBUTION EXAMPLE

The marginal posterior chemical concentration is

$$p\left(\mu \mid \mathbf{y}
ight) = \int d au \, p\left(\mu, au \mid \mathbf{y}
ight).$$

- The distribution of likely concentrations is what we are ultimately interested in.
- We thus marginalize with respect to the instrument precision, and the precision τ is a nuisance parameter.
- But before we can evaluate the marginal posterior, we need to obtain the joint posterior.

JOINT POSTERIOR FOR NORMAL DATA

The joint posterior is

$$egin{aligned} p\left(\mu, au\mid\mathbf{y}
ight) &\propto p\left(\mu, au
ight) p\left(\mathbf{y}\mid\mu, au
ight) \ &\propto p\left(\mu, au
ight) \left(rac{ au}{2\pi}
ight)^{n/2} \exp\left(-rac{ au\sum_{i=1}^n \left(y_i-\mu
ight)^2}{2}
ight). \end{aligned}$$

We use a prior ansatz $au \sim \mathsf{Gamma}\left(a_0, b_0
ight)$ and $\mu \sim \mathsf{Normal}\left(
u_0, rac{1}{\kappa_0 au}
ight)$ such that

$$p\left(\mu, au \mid \mathbf{y}
ight) \propto au^{1/2} \exp\left(-rac{\kappa_0 au}{2} \left(\mu -
u_0
ight)^2
ight) au^{a_0 - 1} \exp\left(-b_0 au
ight) au^{n/2} \exp\left(-rac{ au n}{2} \sum_{i=1}^n rac{y_i^2 - 2\mu y_i + y_i^2}{n}
ight) \ \propto au^{a_0 - 1 + rac{n+1}{2}} \exp\left(- au \left[b_0 + rac{\kappa_0}{2} \left(\mu^2 - 2\mu
u_0 +
u_0^2
ight) + rac{n}{2} \left(s - 2\mu ar{y} + \mu^2
ight)
ight]
ight),$$

where $s = \sum_{i=1}^{n} \frac{y_i^2}{n}$ is the second moment of the sample. We note $a_n = a_0 + \frac{n}{2}$ and consider the term in brackets, which we call L.

- Deriving the joint posterior is tedious but a worthwhile exercise.
- This derivation is the most fiddly algebra of the course, but I encourage you to verify the derivation in your own time.
- Using samplers to explore the posterior (see later lectures) allows us to side-step these derivations.
- Aside: Bayes had a bit of a revival starting in the late 90s because computational statistics became feasible.

No notes on this slide.

JOINT POSTERIOR FOR NORMAL DATA

$$\begin{split} L &= b_0 + \frac{\kappa_0}{2} \left(\mu^2 - 2\mu\nu_0 + \nu_0^2 \right) + \frac{n}{2} \left(s - 2\mu\bar{y} + \mu^2 \right) \\ &= b_0 + \frac{1}{2} \left(\kappa_0 \mu^2 - 2\kappa_0 \mu\nu_0 + \kappa_0 \nu_0^2 + ns - 2n\mu\bar{y} + n\mu^2 \right) \\ &= b_0 + \frac{\kappa_0 + n}{2} \left(\mu^2 - 2\mu \frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} + \frac{\kappa_0 \nu_0^2 + ns}{\kappa_0 + n} \right) \\ &= b_0 + \frac{\kappa_0 + n}{2} \left(\mu^2 - 2\mu \frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} + \left(\frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} \right)^2 - \left(\frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} \right)^2 + \frac{\kappa_0 \nu_0^2 + ns}{\kappa_0 + n} \right) \\ &= b_0 + \frac{\kappa_0 + n}{2} \left(\mu - \frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} \right)^2 + \frac{\kappa_0 + n}{2} \left(\frac{\kappa_0 \nu_0^2 + ns}{\kappa_0 + n} - \left(\frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} \right)^2 \right). \end{split}$$

We note $\kappa_n=\kappa_0+n$ and $u_n=rac{\kappa_0
u_0+nar{y}}{\kappa_0+n}$. We further consider the first and last terms which is b_n .

No notes on this slide.

JOINT POSTERIOR FOR NORMAL DATA

$$\begin{split} b_n &= b_0 + \frac{\kappa_0 + n}{2} \left(\frac{\kappa_0 \nu_0^2 + ns}{\kappa_0 + n} - \left(\frac{\kappa_0 \nu_0 + n\bar{y}}{\kappa_0 + n} \right)^2 \right) \\ &= b_0 + \frac{1}{2} \left(\kappa_0 \nu_0^2 + ns - \frac{\kappa_0^2 \nu_0^2 + 2\kappa_0 \nu_0 n\bar{y} + n^2 \bar{y}^2}{\kappa_0 + n} \right) \\ &= b_0 + \frac{\left(\kappa_0 \nu_0^2 + ns \right) \left(\kappa_0 + n \right) - \kappa_0^2 \nu_0^2 - 2\kappa_0 \nu_0 n\bar{y} - n^2 \bar{y}^2}{2 \left(\kappa_0 + n \right)} \\ &= b_0 + \frac{\kappa_0^2 \nu_0^2 + n\kappa_0 \nu_0^2 + \kappa_0 ns + n^2 s - \kappa_0^2 \nu_0^2 - 2\kappa_0 \nu_0 n\bar{y} - n^2 \bar{y}^2}{2 \left(\kappa_0 + n \right)} \\ &= b_0 + \frac{n}{2 \left(\kappa_0 + n \right)} \left(\kappa_0 \left(s - 2\nu_0 \bar{y} + \nu_0^2 \right) + n \left(s - \bar{y}^2 \right) \right). \end{split}$$

UPDATE RULES

$$egin{aligned} &\kappa_n &= \kappa_0 + n, \ &
u_n &= rac{\kappa_0
u_0 + n ar{y}}{\kappa_0 + n}, \ &a_n &= a_0 + rac{n}{2}, \ &b_n &= b_0 + rac{n}{2\left(\kappa_0 + n
ight)} \left(\kappa_0 \left(s - 2
u_0 ar{y} +
u_0^2
ight) + n ext{var} \mathbf{y}
ight) \end{aligned}$$

Speaker notes

- We derived four update rules for the posterior parameters, but the approach quickly becomes infeasible for more complex models.
- We have the joint posterior, and we can evaluate the marginal posterior distribution.
- In your own time, consider the limiting cases of large observation precision $\tau \to \infty$, large sample size $n \to \infty$, and large prior precision $\kappa_0 \to \infty$. Do the limiting cases agree with your intuition?

.

```
> # Define some random variables with correct support.
 2
    > n <- 7
    > y <- rnorm(n)
 3
    > tau <- rgamma(1, 5, 5)</pre>
 4
    > mu < - rnorm(1)
 5
 <u>6</u>
    > nu 0 < - rnorm(1)
    > kappa 0 <- rgamma(1, 5, 5)</pre>
8
    > a 0 < - rgamma(1, 5, 5)
9
    > b 0 <- rgamma(1, 5, 5)
10
    > reference <- dnorm(mu, mean = nu 0, sd = 1 / sqrt(kappa_0 * tau),</pre>
11
<u>12</u>
    + log = TRUE) + dgamma(tau, shape = a 0, rate = b 0, log = TRUE) +
<u>13</u>
        sum(dnorm(y, mean = mu, sd = 1 / sqrt(tau), log = TRUE))
    +
<u>14</u>
    > print(paste("reference", reference))
<u>15</u>
<u>16</u>
    [1] "reference -14.8945129997231"
17
    > # Replace distributions by explicit values.
18
    > test value <- log(kappa 0 * tau / (2 * pi)) / 2 - kappa 0 * tau / 2 *</pre>
<u>19</u>
    + (mu - nu 0)^2 + a 0 * log(b 0) - lgamma(a 0) + (a 0 - 1) * log(tau) -
20
21
22
23
         b 0 * tau + n * log(tau / (2 * pi)) / 2 - tau / 2 * sum((y - mu)^2)
   +
    > stopifnot(all.equal(test value, reference))
    >
<u>24</u>
    > # Group terms and introduce a normalization constant to absorb terms.
<u>25</u>
    > evaluate log norm <- function(n, kappa, a, b) {</pre>
<u>26</u>
         return(
    +
<u>27</u>
<u>28</u>
<u>29</u>
           (log(kappa) - (n + 1) * log(2 * pi)) / 2 +
    +
           a * log(b) - lgamma(a)
    +
   +
30
    + }
```

 Using R or another programming language can be a convenient way to verify algebraic manipulation by evaluating the manipulated expressions at some arbitrary values.

No notes on this slide.

MARGINAL POSTERIOR FOR μ

Recall

$$p\left(\mu \mid \mathbf{y}, a_n, b_n
ight) = \int d au \, \sqrt{rac{\kappa_n au}{2\pi}} \exp\left(-rac{\kappa_n au}{2} \left(\mu -
u_n
ight)^2
ight) rac{b_n^{a_n}}{\Gamma(a_n)} au^{a_n - 1} \exp\left(-b_n au
ight) \ \propto \int d au \, au^{a_n + 1/2 - 1} \exp\left(-\left(b_n + rac{\kappa_n \left(\mu -
u_n
ight)^2}{2}
ight) au
ight),$$

where $\{\nu_n, \kappa_n, a_n, b_n\}$ are posterior parameters. The integrand is the kernel of a gamma distribution with effective parameters.

$$egin{aligned} a' &= a_n + rac{1}{2} \ b' &= b_n + rac{\kappa_n \left(\mu -
u_n
ight)^2}{2}. \end{aligned}$$

No notes on this slide.

MARGINAL POSTERIOR FOR μ

The integral thus evaluates to the inverse normalization constant $\Gamma(a')b'^{-a'}$, and

$$p\left(\mu \mid \mathbf{y}
ight) \propto \left(1 + rac{a_n \kappa_n \left(\mu -
u_n
ight)^2}{2 a_n b_n}
ight)^{-rac{2 a_n + 1}{2}},$$

where we have absorbed a factor of b_n in the normalization constant and added a factor a_n to nominator and denominator. We compare the expression with the kernel of a non-centered, scaled Student's t-distribution

$$\left(1+rac{\kappa\left(\mu-
u
ight)^2}{q}
ight)^{-rac{q+1}{2}}$$

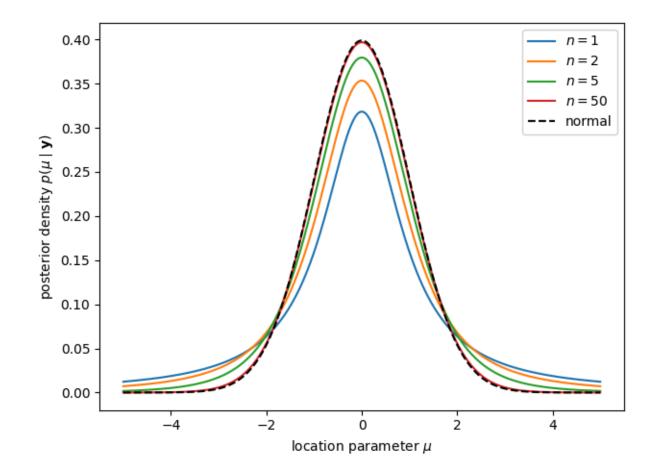
with q degrees of freedom, location ν , and precision κ .

No notes on this slide.

MARGINAL POSTERIOR FOR μ

Matching terms, we have a non-centered, scaled Student's t-distribution with $2a_n$ degrees of freedom. The marginal posterior is

$$\mu \mid \mathbf{y} \sim \mathsf{StudentT}_{2a_n}\left(
u_n, rac{b_n}{\kappa_n a_n}
ight).$$



- The distribution, here shown for $\nu_n = 0$ has heaver tails than a normal distribution with the same parameters. However, even for relatively small sample size of n = 50, the Student's t-distribution closely approximates a normal distribution.
- This extra variance in the posterior for the chemical concentration is expected because we must also infer the observation precision given replicate measurements.

No notes on this slide.

PAIRED EXERCISE

Consider again the example data $\mathbf{y} = (2.1, 2.5, 1.6, 1.7)$.

- Using the derived update rules, what are the posterior parameters?
- Draw posterior samples of μ ? Can you think of two ways to obtain the samples?
- How do summary statistics of the posterior for μ and τ compare with inference assuming one known parameter?

```
> # Declare data and known noise level.
> y <- c(2.1, 2.5, 1.6, 1.7)
> n <- length(y)
> # Define hyperparameters.
> nu 0 <- 0
> kappa 0 <- 1e-4
> a 0 <- 1e-3
> b 0 <- 1e-3
> # Update parameters and sample.
> nu n <- (nu 0 * kappa 0 + n * mean(y)) / (kappa 0 + n)</pre>
> kappa n <- kappa 0 + n</pre>
> a n <- a 0 + n / 2
> b_n <- b_0 + n / 2 * (var(y) * n / (n - 1) + kappa_0 / (kappa_0 + n)</pre>
                       * (mean(y) - nu 0) ** 2)
> tau samples <- rgamma(1000, a n, b n)</pre>
> sigma samples <- 1 / sqrt(tau samples)</pre>
> mu_samples <- rnorm(1000, nu_n, 1 / sqrt(kappa_n * tau_samples))</pre>
> c(mean(mu samples), sd(mu samples),
    mean(sigma_samples), sd(sigma_samples))
+
[1] 1.9708200 0.3235266 0.6033182 0.3464679
>
```

- Lines #2-3 declare data and #5-8 declare hyperparameters.
- #10-14 evaluate the posterior parameters.
- #15-17 sample from the posterior in two steps.
 Alternatively, we could have directly sampled from a Student's t-distribution.