
JOINT INFERENCE
BST228 Applied Bayesian Analysis
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RECAP
Inference of location  given data  and precision .
Inference of precision  given data  and location .

μ y τ

τ y μ

We considered univariate
inferences, assuming one of the
parameters was known.
The natural next step is to infer
both parameters together.
In the instrument manufacturer
example, we may want to jointly
estimate the concentration of a
marker in a sample and the
measurement error by running
replicates. This means we do not
need to rely on the reported
precision of the instrument.
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JOINT INFERENCE IN THEORY

p θ ∣ y =( )  

p y( )
p y ∣ θ p θ( ) ( )

We often do not know any of the
parameters of our model and
need to infer them jointly.
This includes hierarchical
models, regression, non-
parametric models, etc.
Bayes theorem remains
unchanged for multivariate
inference, interpretation of prior,
likelihood, and posterior stay the
same.
However, priors and posteriors
are now multivariate distributions
which require careful analysis.
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JOINT INFERENCE IN PRACTICE
We have posterior

for  parameters.

p θ ∣ y =( ) p θ  , … , θ  ∣ y( 1 q )

q

We need to handle high-
distributions in q  dimensions
which can be both
computationally and
conceptually challenging.
We often report summaries of
the posterior, such as marginal
distributions for each of he
parameters (see next slide).
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JOINT AND MARGINAL DISTRIBUTIONS
For a two-parameter posterior, by the law of total probability,

The marginal posterior  is an average of the conditional posterior  weighted by the marginal
posterior . Here,  is a nuisance variable that is not of primary concern. The integral is referred to as
marginalization.

  

p θ  ∣ y( 1 ) = dθ  p θ  , θ  ∣ y∫ 2 ( 1 2 )

= dθ  p θ  ∣ θ  ,y p θ  ∣ y .∫ 2 ( 1 2 ) ( 2 )

p θ  ∣ y( 1 ) p θ  ∣ θ  ,y( 1 2 )
p θ  ∣ y( 2 ) θ  2

No notes on this slide.
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MARGINAL DISTRIBUTION EXAMPLE
The marginal posterior chemical concentration is

  

p μ ∣ y( ) = dτ p μ, τ ∣ y .∫ ( )

The distribution of likely
concentrations is what we are
ultimately interested in.
We thus marginalize with respect
to the instrument precision, and
the precision  is a nuisance
parameter.
But before we can evaluate the
marginal posterior, we need to
obtain the joint posterior.
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JOINT POSTERIOR FOR NORMAL DATA
The joint posterior is

We use a prior ansatz  and  such that

where  is the second moment of the sample. We note  and consider the term in brackets, which
we call .

  

p μ, τ ∣ y( ) ∝ p μ, τ p y ∣ μ, τ( ) ( )

∝ p μ, τ  exp −  .( ) (
2π
τ

)
n/2

(
2

τ  y  − μ∑i=1
n ( i )2

)

τ ∼ Gamma a  , b  ( 0 0) μ ∼ Normal ν  ,  ( 0 κ  τ0

1 )

  

p μ, τ ∣ y( ) ∝ τ exp −  μ − ν  τ exp −b  τ τ exp −    

1/2 (
2
κ  τ0 ( 0)2) a  −10 ( 0 ) n/2 (

2
τn

i=1

∑
n

n

y  − 2μy  + y  i
2

i i
2

)

∝ τ exp −τ b  +  μ − 2μν  + ν  +  s − 2μ  + μ ,a  −1+  0 2
n+1

( [ 0 2
κ  0 ( 2

0 0
2)

2
n

( ȳ 2)])

s =   ∑i=1
n

n

y  i
2

a  =n a  +0  2
n

L

Deriving the joint posterior is
tedious but a worthwhile
exercise.
This derivation is the most fiddly
algebra of the course, but I
encourage you to verify the
derivation in your own time.
Using samplers to explore the
posterior (see later lectures)
allows us to side-step these
derivations.
Aside: Bayes had a bit of a
revival starting in the late 90s
because computational statistics
became feasible.
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JOINT POSTERIOR FOR NORMAL DATA

We note  and . We further consider the first and last terms which is .

  

L = b  +  μ − 2μν  + ν  +  s − 2μ  + μ0 2
κ  0 ( 2

0 0
2)

2
n

( ȳ 2)

= b  +  κ  μ − 2κ  μν  + κ  ν  + ns − 2nμ  + nμ0 2
1

( 0
2

0 0 0 0
2 ȳ 2)

= b  +  μ − 2μ  +  0 2
κ  + n0 ( 2

κ  + n0

κ  ν  + n  0 0 ȳ

κ  + n0

κ  ν  + ns0 0
2

)

= b  +  μ − 2μ  +  −  +  0 2
κ  + n0 ( 2

κ  + n0

κ  ν  + n  0 0 ȳ
(

κ  + n0

κ  ν  + n  0 0 ȳ
)

2

(
κ  + n0

κ  ν  + n  0 0 ȳ
)

2

κ  + n0

κ  ν  + ns0 0
2

)

= b  +  μ −  +   −  .0 2
κ  + n0 (

κ  + n0

κ  ν  + n  0 0 ȳ
)

2

2
κ  + n0 (

κ  + n0

κ  ν  + ns0 0
2

(
κ  + n0

κ  ν  + n  0 0 ȳ
)

2

)

κ  =n κ  +0 n ν  =n  

κ  +n0

κ  ν  +n  0 0 ȳ b  n
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JOINT POSTERIOR FOR NORMAL DATA

  

b  n = b  +   −  0 2
κ  + n0 (

κ  + n0

κ  ν  + ns0 0
2

(
κ  + n0

κ  ν  + n  0 0 ȳ
)

2

)

= b  +  κ ν  + ns −  0 2
1

( 0 0
2

κ  + n0

κ  ν  + 2κ  ν  n  + n  0
2

0
2

0 0 ȳ 2ȳ2

)

= b  +  0 2 κ  + n( 0 )
κ  ν  + ns κ  + n − κ  ν  − 2κ  ν  n  − n  ( 0 0

2 ) ( 0 ) 0
2

0
2

0 0 ȳ 2ȳ2

= b  +  0 2 κ  + n( 0 )
κ  ν  + nκ  ν  + κ  ns + n s − κ  ν  − 2κ  ν  n  − n  0

2
0
2

0 0
2

0
2

0
2

0
2

0 0 ȳ 2ȳ2

= b  +  κ  s − 2ν   + ν  + n s −  .0 2 κ  + n( 0 )
n

( 0 ( 0ȳ 0
2) ( ȳ2))
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UPDATE RULES

  

κ  n

ν  n

a  n

b  n

= κ  + n,0

=  ,
κ  + n0

κ  ν  + n  0 0 ȳ

= a  +  ,0 2
n

= b  +  κ  s − 2ν  + ν  + nvary .0 2 κ  + n( 0 )
n

( 0 ( 0ȳ 0
2) )

We derived four update rules for
the posterior parameters, but the
approach quickly becomes
infeasible for more complex
models.
We have the joint posterior, and
we can evaluate the marginal
posterior distribution.
In your own time, consider the
limiting cases of large
observation precision ,
large sample size , and
large prior precision .
Do the limiting cases agree with
your intuition?
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> # Define some random variables with correct support.1

> n <- 72

> y <- rnorm(n)3

> tau <- rgamma(1, 5, 5)4

> mu <- rnorm(1)5

> nu_0 <- rnorm(1)6

> kappa_0 <- rgamma(1, 5, 5)7

> a_0 <- rgamma(1, 5, 5)8

> b_0 <- rgamma(1, 5, 5)9

> 10

> reference <- dnorm(mu, mean = nu_0, sd = 1 / sqrt(kappa_0 * tau),11

+   log = TRUE) + dgamma(tau, shape = a_0, rate = b_0, log = TRUE) +12

+   sum(dnorm(y, mean = mu, sd = 1 / sqrt(tau), log = TRUE))13

> print(paste("reference", reference))14

[1] "reference -14.8945129997231"15

> 16

> # Replace distributions by explicit values.17

> test_value <- log(kappa_0 * tau / (2 * pi)) / 2 - kappa_0 * tau / 2 *18

+   (mu - nu_0)^2 + a_0 * log(b_0) - lgamma(a_0) + (a_0 - 1) * log(tau) -19

+   b_0 * tau + n * log(tau / (2 * pi)) / 2 - tau / 2 * sum((y - mu)^2)20

> 21

> stopifnot(all.equal(test_value, reference))22

> 23

> # Group terms and introduce a normalization constant to absorb terms.24

> evaluate_log_norm <- function(n, kappa, a, b) {25

+   return(26

+     (log(kappa) - (n + 1) * log(2 * pi)) / 2 +27

+     a * log(b) - lgamma(a)28

+   )29

+ }30

Using R or another programming
language can be a convenient
way to verify algebraic
manipulation by evaluating the
manipulated expressions at
some arbitrary values.
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MARGINAL POSTERIOR FOR 
Recall

where  are posterior parameters. The integrand is the kernel of a gamma distribution with effective
parameters.

μ

  

p μ ∣ y, a  , b  ( n n) = dτ  exp −  μ − ν   τ exp −b  τ∫  

2π
κ  τn (

2
κ  τn ( n)2)

Γ(a  )n

b  n
a  n

a  −1n ( n )

∝ dτ τ exp − b  +  τ ,∫ a  +1/2−1n ( ( n 2
κ  μ − ν  n ( n)2

) )

ν  ,κ  , a  , b{ n n n n}

  

a′

b′

= a  +  n 2
1

= b  +  .n 2
κ  μ − ν  n ( n)2
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MARGINAL POSTERIOR FOR 

The integral thus evaluates to the inverse normalization constant , and

where we have absorbed a factor of  in the normalization constant and added a factor  to nominator and
denominator. We compare the expression with the kernel of a non-centered, scaled 

with  degrees of freedom, location , and precision .

μ

Γ(a )b′ ′−a
′

  p μ ∣ y( ) ∝ 1 +  ,(
2a  b  n n

a  κ  μ − ν  n n ( n)2

)

−  2
2a  +1n

b  n a  n

Student’s t-distribution

1 +  (
q

κ μ − ν( )2

)

−  2
q+1

q ν κ

No notes on this slide.
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MARGINAL POSTERIOR FOR 

Matching terms, we have a non-centered, scaled  with  degrees of freedom. The marginal
posterior is

μ

Student’s t-distribution 2a  n

μ ∣ y ∼ StudentT  ν  ,  
.2a  n

( n
κ  a  n n

b  n )

No notes on this slide.
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The distribution, here shown for
 has heaver tails than a

normal distribution with the same
parameters. However, even for
relatively small sample size of

, the Student’s t-
distribution closely approximates
a normal distribution.
This extra variance in the
posterior for the chemical
concentration is expected
because we must also infer the
observation precision given
replicate measurements.

Speaker notes

ν  =n 0

n = 50

15 /  17



PAIRED EXERCISE
Consider again the example data .

Using the derived update rules, what are the posterior
parameters?
Draw posterior samples of ? Can you think of two ways
to obtain the samples?
How do summary statistics of the posterior for  and 
compare with inference assuming one known parameter?

y = 2.1, 2.5, 1.6, 1.7( )

μ

μ τ

No notes on this slide.
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> # Declare data and known noise level.1

> y <- c(2.1, 2.5, 1.6, 1.7)2

> n <- length(y)3

> # Define hyperparameters.4

> nu_0 <- 05

> kappa_0 <- 1e-46

> a_0 <- 1e-37

> b_0 <- 1e-38

> # Update parameters and sample.9

> nu_n <- (nu_0 * kappa_0 + n * mean(y)) / (kappa_0 + n)10

> kappa_n <- kappa_0 + n11

> a_n <- a_0 + n / 212

> b_n <- b_0 + n / 2 * (var(y) * n / (n - 1) + kappa_0 / (kappa_0 + n)13

+                    * (mean(y) - nu_0) ** 2)14

> tau_samples <- rgamma(1000, a_n, b_n)15

> sigma_samples <- 1 / sqrt(tau_samples)16

> mu_samples <- rnorm(1000, nu_n, 1 / sqrt(kappa_n * tau_samples))17

> c(mean(mu_samples), sd(mu_samples),18

+   mean(sigma_samples), sd(sigma_samples))19

[1] 1.9708200 0.3235266 0.6033182 0.346467920

> 21

Lines #2-3 declare data and #5-
8 declare hyperparameters.
#10-14 evaluate the posterior
parameters.
#15-17 sample from the
posterior in two steps.
Alternatively, we could have
directly sampled from a
Student’s t-distribution.
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