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OFFICE HOUR
Room 434 in Building 2 Thursdays 11:30am to noon. Zoom at

.https://harvard.zoom.us/j/5482315734

No notes on this slide.
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RECAP
Metropolis with symmetric proposal distribution.
Gibbs sampler with conditional distributions.
Convergence diagnostics ( , autocorrelation, trace plots,
effective sample size).
Tweaking sampling algorithms (proposal distribution,
blocking, initialization).

R̂

Metropolis algo. proposes new
parameter values  and accepts

with prob. , where  are

current parameter values.
Gibbs samples the posterior by
iteratively sampling from
conditional dist.; can be more
tractable than full joint dist.

 is ratio of between- to within-
chain variance. If , likely
not converged because chains
are not sampling the same dist.
Autocorrelation and effective
sample size (ESS) measure
efficiency of the algorithm. High
autocorrelation and low ESS →
many iterations needed.
Trace plots can be instructive but
are not feasible for models with
many parameters.
Tweaking samplers is important
to explore posterior efficiently,
e.g., scale of proposal for
Metropolis, order and sampling
parameters together for Gibbs.
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> sample_one <- function(log_target, x, scale) {1

+   # Draw proposal and calculate log ratio.2

+   proposal <- rnorm(length(x), x, scale)3

+   log_ratio <- log_target(proposal) - log_target(x)4

+   # Accept-reject step.5

+   if (log(runif(1)) < log_ratio) {6

+     result <- list(accept = 1, value = proposal)7

+   } else {8

+     result <- list(accept = 0, value = x)9

+   }10

+   result11

+ }12

> 13

> set.seed(2024)14

> log_target <- function(x) {15

+   sum(dnorm(x, c(1, 2), c(.5, 2), log = TRUE))16

+ }17

> sample_one(log_target, c(0, -1), c(1, 1))18

$accept19

[1] 120

21

$value22

[1]  0.9819694 -0.531285023

24

> 25

Want generic sampling algorithm
so we don’t need to start from
scratch.
sample_one  runs one
Metropolis iteration normal
proposal dist. (line #3), ratio of
densities (#4) using log for
numerical stability, accept-reject
(#6-10).
#15-17 declares a target
distribution (normal with mean
c(1, 2)  and scale c(.5, 
2) ).
We run one sampling step in #18
which is accepted.
Note: This sampler can propose
values outside the support of the
target dist., e.g., for positive
parameters. Two solutions: (a)
reject all proposals outside
support or (b) make a change of
variables such that all
parameters are real. The latter is
the approach taken by Stan
which we will use later in the
course.
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> source("mh_one.R")1

> 2

> sample_n <- function(log_target, x, scale, n) {3

+   # Initialize the samples.4

+   samples <- list(5

+     value = matrix(nrow = n, ncol = length(x)),6

+     accept = numeric(n)7

+   )8

+   # Run the sampling loop.9

+   for (i in 1:n) {10

+     current <- sample_one(log_target, x, scale)11

+     samples$value[i, ] <- current$value12

+     samples$accept[i] <- current$accept13

+     x <- current$value14

+   }15

+   samples16

+ }17

> 18

> # Draw samples and plot them.19

> samples <- sample_n(log_target, c(-20, -11), c(1, 1), 500)20

> mean(samples$accept)21

[1] 0.4822

> png("samples.png", width = 800, height = 600)23

> plot(samples$value[, 1], samples$value[, 2], type = "l", col = "blue")24

> dev.off()25

null device 26

          1 27

> 28

sample_n  uses sample_one
to run a sampling loop.
Lines #5-8 initialize variables to
keep track of samples.
#10-15 runs the sampling by
iteratively calling sample_one .
#20 runs the sampler on the
previously defined target
distribution; #21 evaluates the
mean acceptance prob.
#23-25 plots the trajectory of the
sampler (see next slide).
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Figure shows trajectory of the
sampler, starting in the lower left
corner of the plot.
Early burnin samples should be
discarded until the sampler
reaches the target dist.
After a sufficient number of
burnin samples, the sampler
explores the target dist. well.
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> source("mh_n.R")1

> 2

> # Draw samples and plot them.3

> png("samples_multiple.png", width = 800, height = 600)4

> samples <- sample_n(log_target, c(-20, -11), c(1, 1), 500)5

> plot(samples$value[, 1], samples$value[, 2], type = "l", col = "blue",6

+      xlim = c(-22, 17), ylim = c(-15, 12))7

> samples <- sample_n(log_target, c(15, -11), c(1, 1), 500)8

> lines(samples$value[, 1], samples$value[, 2], col = "red")9

> samples <- sample_n(log_target, c(13, 11), c(1, 1), 500)10

> lines(samples$value[, 1], samples$value[, 2], col = "darkgreen")11

> samples <- sample_n(log_target, c(-13, 11), c(1, 1), 500)12

> lines(samples$value[, 1], samples$value[, 2], col = "darkorchid")13

> points(1, 2, col = "white", bg = "black", pch = 21, cex = 2)14

> dev.off()15

null device 16

          1 17

> 18

We run and plot four different
chains with different initial
conditions (lines #5-13).
#14 shows the true posterior
mean as a black circle with white
edge.
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Samplers with different initial
conditions approach the
distribution from different
directions.
For early samples,  would be
large because the variance
between chains >> variance
within chains.
Running multiple chains from
different starting points is always
a good idea to check for
convergence.
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Implementation supports
different scales ( scale
argument can be a vector).
Important for posteriors that are
not isotropic.
Top panel shows a normal
bivariate posterior with different
scales for each dimension.
Using the same proposal scale
for both parameters is inefficient.
If scale  is too small (blue),
exploration is slow in the larger
dimension (high autocorrelation).
If scale  is too big (orange),
exploration is slow because
samples are often rejected.
Bottom panel shows trace plots
for : orange has low
acceptance rate, blue has high
autocorrelation, and green is
well-tuned (uses proposal scales
tuned to the target dist.).
There are 

. In practice, we often use
a warmup phase to find the right
scales using software like Stan.
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LINEAR REGRESSION

or

​ ​

y ​i

ϵ ​i

= β ​ + β ​x ​ + … + β ​x ​ + ϵ ​0 1 i1 p ip i

∼ Normal 0, τ( −1)

y ​ ∼i Normal β ​ + β ​x ​ + … + β ​x ​, τ .( 0 1 i1 p ip
−1)

Linear regression is one of the
most commonly used models.

 is the response of the 
observation.

 is the  feature of the 
observation.

 captures residual noise but
also “swallows” model
misspecification;  is the
precision of observations.

 is the intercept and  for
 are regression coefficients

for each of  features.
Alternative formulation is often
easier for figuring out what the
likelihood is: Independent noisy
observations of the predictor

.

Speaker notes

y ​i ith

x ​ij jth ith

ϵ ​i

τ

β ​0 β ​j

j > 0
p

β ​ +0 β ​x ​ +1 i1 … + β ​x ​p ip

10 /  25



A more concise representation in vector notation is

where  is the identity matrix and

y ∼ Normal Xβ, τ I ,( −1 )

I

​ ​

y

X

β

= y ​, … , y ​( 1 n)⊺

= ​ ​ ​ ​ ​ ​

⎝

⎛1
1

⋮
1

x ​11

x ​21

⋮
x ​n1

…
…

⋱
…

x ​1q

x ​2q

⋮
x ​nq

⎠

⎞

= β ​,β ​, … ,β ​ .( 0 1 q)
⊺

Why vector notation? We don’t
have to write as much; easier to
manipulate and interpret.
We need to further investigate
the distribution for  because 
is a vector. The distribution is a
multivariate normal distribution
(MVN).
MVNs generalize normal
distributions and support
correlated outcomes.

Speaker notes

y y

11 /  25



MULTIVARIATE NORMAL
DISTRIBUTION

A multivariate normal random variable  has density

with mean  and precision .

y ∈ Rn

​ ​

p y ∣ ν,κ( ) = 2π κ( )n/2 ∣ ∣1/2

× exp − ​ y − ν κ y − ν(
2
1

( )⊺ ( ))

ν κ

MVN density has the same
functional form as regular normal
distribution except scalars are
replaced by vectors (  and )
and matrices ( ).
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MULTIVARIATE NORMAL TO INDEPENDENT NORMAL
For , the elements of  reduce to independent samples from a normal distribution, where  is the identity matrix.
Consider the density

where the factor of  follows from   for any scalar  and square matrix  and . The
expression in brackets follows because the scalar  commutes with inner products.

The inner product can be expressed as , and we recover the likelihood of 
independent normal samples

κ = τI y I

​ ​

p y ∣ ν,κ( ) = 2π κ exp − ​ y − ν κ y − ν( )n/2 ∣ ∣1/2 [
2
1

( )⊺ ( )]

= 2π τI exp − ​ y − ν τI y − ν( )n/2 ∣ ∣1/2 [
2
1

( )⊺ ( )]

= ​ exp − ​ y − ν y − ν ,(
2π
τ

)
n/2

[
2
τ

( )⊺ ( )]

τn/2 the identity aB =∣ ∣ a Bn ∣ ∣ a B I =∣ ∣ 1
τ

y − ν y − ν =( )⊺ ( ) ​ y ​ − ν ​∑i=1
n ( i i)

2
n

p y ∣ ν,κ =( ) ​ exp − ​ ​ y ​ − ν ​ .(
2π
τ

)
n/2

[
2
τ

i=1

∑
n

( i i)
2]

No notes on this slide.
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Examples of samples from MVN.
When covariance matrix 

 is diagonal, we have
independent samples (blue).
Non-zero off-diagonals induce
correlation between samples
(orange). We also have a
“stretched” ellipse because the
diagonal elements are different.
The distribution is elongated in
the  dimension because

.
In the regression sample, we
assume independent
observations. So why should we
bother with the more complex
MVN distribution? Because it
simplifies the algebra for deriving
conditional distributions for a
Gibbs sampler.
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We consider the example of a
sample of 12 people
participating in a randomized
control trial.
Each is assigned to one of two
exercise regimes: running  on
a flat service or aerobic
exercise.
The change in maximal 
exchange  in L/min was
recorded, comparing pre and
post treatment.
We also have other data 
comprising the assigned
treatment and participant age.
The change in  exchange
conditional on other data is of
primary interest, e.g., to predict
changes for other members of
the population.
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VENTILATION DATA
responses .
other data

where the first column is an aerobic  indicator and the
second is age.

y = 17.05, 4.96, … , −7.25( )⊺

Z = ​ ​ ​ ​ ,

⎝

⎛1
1

⋮
0

31
23

⋮
20⎠

⎞

Data comprise a response
vector  and other data

.
We use  instead of  here
because we may want to use
other features beyond the raw
data for regression.
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DATA TO FEATURES
We transform the data to features:

 is the intercept,
 is the aerobic  indicator,
 is the age,

 is an interaction term.

x ​ =i0 1
x ​ =i1 z ​i1

x ​ =i2 z ​i2

x ​ =i3 z ​ ×i1 z ​i2

We use index notation for the
elements of the features (aka
design matrix), i.e.,  is the
element in the  row and 
column of .
The aerobic  indicator
captures common changes
between the two treatment
groups independent of age.
The interaction term allows for
different slopes with respect to
age in the two treatment groups.
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COMPLETING THE MODEL
We have the likelihood

and complete the model with priors

y ∼ Normal Xβ, τ I( −1 )

​ ​

β

τ

∼ Normal ν ​,κ ​( 0 0
−1)

∼ Gamma a ​, b ​ .( 0 0)

This looks very much like the
structure of the painful algebra
we went through two weeks ago.
We could do that again and get a
closed-form posterior for the
regression.
Instead, we consider a Gibbs
sampler because the conditional
distributions aren’t too bad–but
still not great.
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CONDITIONAL POSTERIOR FOR REGRESSION COEFFICIENTS  (1 / 2)

The conditional posterior for regression coefficients  is

where the second line follows by substitution of the likelihood and prior from the previous slide using the multivariate
normal density from slide 11. The third line follows by distributing the inner products. Collecting terms gives

where we have defined . This term looks just like the precision matrix of a multivariate normal
distribution. On the next slide, we consider the linear terms in .

β

β

​

p β ∣ X,y, τ( ) = p y ∣ X, τ ,β p β( ) ( )

∝ exp − ​ y −Xβ y −Xβ − ​ β − ν ​ κ ​ β − ν ​[
2
τ

( )⊺ ( )
2
1

( 0)⊺ 0 ( 0)]

∝ exp − ​ y y − y Xβ − β X y + β X Xβ − ​ β κ ​β − β κ ​ν ​ − ν ​κ ​β + ν ​κ ​ν ​ ,[
2
τ

( ⊺ ⊺ ⊺ ⊺ ⊺ ⊺ )
2
1

( ⊺
0

⊺
0 0 0

⊺
0 0

⊺
0 0)]

​ ​

p β ∣ X,y, τ( ) ∝ exp − ​ β κ ​β − β κ ​ν ​ + τX y − κ ​ν ​ + τX y β ,[
2
1

( ⊺
n

⊺ ( 0 0
⊺ ) ( 0 0

⊺ )⊺ )]

κ ​ =n κ ​ + τX X( 0
⊺ )

β

No notes on this slide.
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CONDITIONAL POSTERIOR FOR REGRESSION COEFFICIENTS  (2 / 2)

Without changing the result, we insert  between  and  to get

where we defined . We can now complete the square to obtain

and the conditional distribution is multivariate normal:

β

κ ​κ ​ =n n
−1 I β κ ν ​ + τX y( 0 0

⊺ )

​ ​

p β ∣ X,y, τ( ) ∝ exp − ​ β κ ​β − β κ ​κ ​ κ ​ν ​ + τX y − κ ​ν ​ + τX y κ ​κ ​β[
2
1

( ⊺
n

⊺
n n

−1 ( 0 0
⊺ ) ( 0 0

⊺ )⊺ n
−1

n )]

∝ exp − ​ β κ ​β − β κ ​ν ​ − ν ​κ ​β ,[
2
1

( ⊺
n

⊺
n n n

⊺
n )]

ν ​ =n κ ​ κ ​ν ​ + τX yn
−1 ( 0 0

⊺ )

​ ​

p β ∣ X,y, τ( ) ∝ exp − ​ β − ν ​ κ ​ β − ν ​[
2
1

( n)⊺ n ( n)]

β ∣ X,y, τ ∼ Normal κ ​ + τX X κ ​ν ​ + τX y , κ ​ + τX X .(( 0
⊺ )−1 ( 0 0

⊺ ) ( 0
⊺ )−1)

No notes on this slide.
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CONDITIONAL POSTERIOR FOR OBSERVATION PRECISION 

The conditional posterior for observation precision  is

Collecting terms, we recognize the kernel of a gamma distribution with parameters

τ

τ

​ ​

p τ ∣ X,y,β( ) = p y ∣ X, τ ,β p τ( ) ( )

∝ τ exp − ​ y −Xβ y −Xβ τ exp −b ​τ .n/2 [
2
τ

( )⊺ ( )] a ​−10 [ 0 ]

​ ​

a ​n

b ​n

= a ​ + ​0 2
n

= b ​ + ​ y −Xβ y −Xβ .0 2
1

( )⊺ ( )

No notes on this slide.
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CONDITIONAL DISTRIBUTIONS
The conditional Gibbs updates are

​ ​

β ∣ X,y, τ

τ ∣ X,y,β

∼ Normal κ ​ + τX X κ ​ν ​ + τX y , κ ​ + τX X(( 0
⊺ )−1 ( 0 0

⊺ ) ( 0
⊺ )−1)

∼ Gamma a ​ + ​ , b ​ + ​ .( 0 2
n

0 2
y −Xβ y −Xβ( )⊺ ( )

)

We have now arrived at the
conditional posterior distributions
we need to sample from the full
posterior using a Gibbs sampler.
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LIMITING CASES (1 / 2)
For large prior precision , we recover our prior best guess at the regression coefficients:

For large observation precision , we recover the maximum likelihood estimate:

where the second equality follows because  and the third because scalars commute with inner
products.

κ ​0

​ ​

​E β ∣ X,y, τ
κ ​→∞0
lim [ ] = ​ κ ​ + τX X κ ​ν ​ + τX y

κ ​→∞0
lim ( 0

⊺ )−1 ( 0 0
⊺ )

= ​κ ​κ ​ν ​

κ ​→∞0
lim 0

−1
0 0

= ν ​.0

τ

​ ​

​E β ∣ X,y, τ
τ→∞
lim [ ] = ​ κ ​ + τX X κ ​ν ​ + τX y

τ→∞
lim ( 0

⊺ )−1 ( 0 0
⊺ )

= ​τ X X τX y
τ→∞
lim −1 ( ⊺ )−1 ⊺

= X X X y,( ⊺ )−1 ⊺

aB =( )−1
a B−1 −1

We consider limiting cases as
sanity checks for the derivation
of the conditional distributions.
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LIMITING CASES (2 / 2)
For the limit , we need to rearrange the expression for  slightly because it does not explicitly depend on :

In the limit, the expressions in brackets converge to expectations under an infinite population:

Substituting yields

The second and third equalities follow the same argument as for the limit  on the previous slide.

n → ∞ ν ​n n

​

ν ​ = κ ​ + τn ​ ​x ​x ​ κ ​ν ​ + τn ​ ​x ​y ​ .n ( 0 [
n

1

i=1

∑
n

i j
⊺])

−1

( 0 0 [
n

1

i=1

∑
n

i i])

​ ​

​ ​ ​x ​x ​

n→∞
lim

n

1

i=1

∑
n

i j
⊺

​ ​ ​x ​y ​

n→∞
lim

n

1

i=1

∑
n

i i

= E xx[ ⊺]

= E xy[ ]

​ ​

​ν ​

n→∞
lim n = ​ κ ​ + τnE xx κ ​ν ​ + τnE xy

n→∞
lim ( 0 [ ])−1 ( 0 0 [ ])

= ​ τn E xx τnE xy
n→∞
lim ( )−1 ( [ ])−1 [ ]

= E xx E xy .( [ ])−1 [ ]

τ → ∞

In a Bayesian setting, we rarely
think about infinite populations
except for limiting cases such as
this one.
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Semi-transparent lines are
posterior samples of 
consistent with the observed
data.
We have two lines for the two
different treatment regimes.
Solid lines are posterior means
averaged over all samples, i.e.,
the solid blue line is the average
of all semi-transparent blue
lines.
Uncertainties reflect our intuition,
e.g., the response for
participants of the running
regime with large age is poorly
constrained.
Here we capture uncertainties in
the predictor . Variance
would differ for the posterior
predictive distribution which we
consider in a future lecture.
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