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RECAP
Developed the likelihood  for linear
regression.
Derived conditional posterior distributions  for
regression coefficients and .
Considered limiting cases as sanity checks.
Started applying methods to respiratory function dataset.

p y ∣ X,β, τ( )

β ∣ X,y, τ
τ ∣ X,y,β

 are responses,  are
features,  are regression
coefficients,  is observation
noise precision.
Linear regression likelihood can
be expressed either in vector
notation or as sum in log space
for independent observations.
The former is often more
convenient for algebraic
manipulation.
We want to recover the prior
mean  for large prior precision

 and the MLE for large
observation precision .
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TODAY
Review derivations and limiting cases.
Gibbs sampler for regression.
Analyze posterior samples.
Posterior of best fit vs posterior predictive distribution.
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CONDITIONAL POSTERIOR FOR REGRESSION COEFFICIENTS  (1 / 2)

The conditional posterior for regression coefficients  is

where the second line follows by substitution of the likelihood and prior from the previous slide using the multivariate
normal density from slide 11 of lecture 11. The third line follows by distributing the inner products. Collecting terms gives

where we have defined . This term looks just like the precision matrix of a multivariate normal
distribution. On the next slide, we consider the linear terms in .

β

β

 

p β ∣ X,y, τ( ) = p y ∣ X, τ ,β p β( ) ( )

∝ exp −  y −Xβ y −Xβ −  β − ν  κ  β − ν  [
2
τ

( )⊺ ( )
2
1

( 0)⊺ 0 ( 0)]

∝ exp −  y y − y Xβ − β X y + β X Xβ −  β κ  β − β κ  ν  − ν  κ  β + ν  κ  ν  ,[
2
τ

( ⊺ ⊺ ⊺ ⊺ ⊺ ⊺ )
2
1

( ⊺
0

⊺
0 0 0

⊺
0 0

⊺
0 0)]

  

p β ∣ X,y, τ( ) ∝ exp −  β κ  β − β κ  ν  + τX y − κ  ν  + τX y β ,[
2
1

( ⊺
n

⊺ ( 0 0
⊺ ) ( 0 0

⊺ )⊺ )]

κ  =n κ  + τX X( 0
⊺ )

β
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CONDITIONAL POSTERIOR FOR REGRESSION COEFFICIENTS  (2 / 2)

Without changing the result, we insert  between  and  to get

where we defined . We can now complete the square to obtain

and the conditional distribution is multivariate normal:

β

κ  κ  =n n
−1 I β κ ν  + τX y( 0 0

⊺ )

  

p β ∣ X,y, τ( ) ∝ exp −  β κ  β − β κ  κ  κ  ν  + τX y − κ  ν  + τX y κ  κ  β[
2
1

( ⊺
n

⊺
n n

−1 ( 0 0
⊺ ) ( 0 0

⊺ )⊺ n
−1

n )]

∝ exp −  β κ  β − β κ  ν  − ν  κ  β ,[
2
1

( ⊺
n

⊺
n n n

⊺
n )]

ν  =n κ  κ  ν  + τX yn
−1 ( 0 0

⊺ )

  

p β ∣ X,y, τ( ) ∝ exp −  β − ν  κ  β − ν  [
2
1

( n)⊺ n ( n)]

β ∣ X,y, τ ∼ Normal κ  + τX X κ  ν  + τX y , κ  + τX X .(( 0
⊺ )−1 ( 0 0

⊺ ) ( 0
⊺ )−1)
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CONDITIONAL POSTERIOR FOR OBSERVATION PRECISION 

The conditional posterior for observation precision  is

Collecting terms, we recognize the kernel of a gamma distribution with parameters

τ

τ

  

p τ ∣ X,y,β( ) = p y ∣ X, τ ,β p τ( ) ( )

∝ τ exp −  y −Xβ y −Xβ τ exp −b  τ .n/2 [
2
τ

( )⊺ ( )] a  −10 [ 0 ]

  

a  n

b  n

= a  +  0 2
n

= b  +  y −Xβ y −Xβ .0 2
1

( )⊺ ( )
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LIMITING CASES (1 / 2)
For large prior precision , we recover our prior best guess at the regression coefficients:

For large observation precision , we recover the maximum likelihood estimate:

where the second equality follows because  and the third because scalars commute with inner
products.

κ  0

  

 E β ∣ X,y, τ
κ  →∞0
lim [ ] =  κ  + τX X κ  ν  + τX y

κ  →∞0
lim ( 0

⊺ )−1 ( 0 0
⊺ )

=  κ  κ  ν  

κ  →∞0
lim 0

−1
0 0

= ν  .0

τ

  

 E β ∣ X,y, τ
τ→∞
lim [ ] =  κ  + τX X κ  ν  + τX y

τ→∞
lim ( 0

⊺ )−1 ( 0 0
⊺ )

=  τ X X τX y
τ→∞
lim −1 ( ⊺ )−1 ⊺

= X X X y,( ⊺ )−1 ⊺

aB =( )−1
a B−1 −1

We consider limiting cases as
sanity checks for the derivation
of the conditional distributions.
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LIMITING CASES (2 / 2)
For the limit , we need to rearrange the expression for  slightly because it does not explicitly depend on :

In the limit, the expressions in brackets converge to expectations under an infinite population:

Substituting yields

The second and third equalities follow the same argument as for the limit  on the previous slide.

n → ∞ ν  n n

 

ν  = κ  + τn   x  x  κ  ν  + τn   x  y  .n ( 0 [
n

1

i=1

∑
n

i j
⊺])

−1

( 0 0 [
n

1

i=1

∑
n

i i])

  

   x  x  

n→∞
lim

n

1

i=1

∑
n

i j
⊺

   x  y  

n→∞
lim

n

1

i=1

∑
n

i i

= E xx[ ⊺]

= E xy[ ]

  

 ν  

n→∞
lim n =  κ  + τnE xx κ  ν  + τnE xy

n→∞
lim ( 0 [ ])−1 ( 0 0 [ ])

=  τn E xx τnE xy
n→∞
lim ( )−1 ( [ ])−1 [ ]

= E xx E xy .( [ ])−1 [ ]

τ → ∞

In a Bayesian setting, we rarely
think about infinite populations
except for limiting cases such as
this one.
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> # Load the data and construct features.1

> data <- read.csv("../lecture_11_regression/ventilation_change.csv")2

> y <- data$change3

> Z <- cbind(data$group == "aerobic", data$age)4

> X <- cbind(rep(1, length(y)), Z[, 1], Z[, 2], Z[, 1] * Z[, 2])5

> n_features <- ncol(X)6

> n_subjects <- nrow(X)7

> 8

> # Hyperparameters.9

> nu_0 <- rep(0, n_features)10

> kappa_0 <- diag(n_features) * 1e-411

> a_0 <- 1e-312

> b_0 <- 1e-313

> 14

Lines #2-7 load the data Z  and
construct the design matrix X .
#10-11 declare hyperparameters
for a “non-informative” MVN prior
for regression coefficients .
#12-13 declare hyperparameters
for a “non-informative” gamma
prior for observation precision .
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> source("ventilation_init.R")1

> source("rmvnorm.R")2

> 3

> # Initialize the sampler.4

> n_samples <- 100005

> beta <- rnorm(n_features)6

> tau <- rgamma(1, 5, 5)7

> samples <- list(beta = matrix(nrow = n_samples, ncol = n_features),8

+                 tau = numeric(n_samples))9

> 10

> set.seed(42)11

> for (i in 1:n_samples) {12

+   # Sample beta given tau.13

+   # beta <- rmvnorm(1, ...)14

+   # Sample tau given beta.15

+   # tau <- rgamma(1, ...)16

+   # Record values.17

+   samples$beta[i, ] <- beta18

+   samples$tau[i] <- tau19

+ }20

> 21

Line #1 loads from previous file.
#2 loads helper rmvnorm  to
sample from MVN (not included
in R).
#5-9 set up variables to store
samples.
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We obtain samples of the
regression coefficients  and
evaluate the predictor 
for different ages and exercise
regimes.
Transparent lines are individual
samples and give us a notion of
variability.
Solid lines are the posterior
mean of predictors and are our
best-fit line.
We have “succeeded” in the
sense of having sensible fits with
uncertainty quantification.
We next analyze posterior
samples to get a deeper
understanding of regression, the
shape of the posterior,
implications for inference and
prediction.
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We have four pair plots of
posterior samples of precision 
(y-axis) against each of the
coefficients .
Pair plots are simple yet one of
the most powerful tools for
analyzing posterior distributions.
Vertical lines are the maximum
likelihood estimates.
We have a distinctive “funnel” or
“pyramid” shape in these plots.
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Consider a pair plot of the
intercept  and age regression
coefficient . There is very
strong correlation.
Second panel is heatmap of
posterior correlation matrix. Red
is correlated, blue is anti-
correlated.
All parameters exhibit strong
(anti-)correlation.
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COLLABORATION
For 3 minutes, explore these questions by yourself. For 5

minutes, discuss with a group. Note your insights on post-its.

What is the origin of the funnels in  pair plots?
Why are the regression coefficients correlated?
What implications do your insights have for samplers?
How does this affect your interpretation of regression
coefficients?

τ − β

Funnels are due to large
precision giving rise to more
precise parameter estimates.
Regression coefficients are
correlated due to co-linearity of
features.
Un-blocked Gibbs and
Metropolis samplers will explore
very slowly for correlated
posteriors. Same for funnels
because we need to explore the
“neck” and “bulk” separately.
Rejection samplers would have
very high rejection rate.
Interpretation of coefficients is
challenging because marginal
posteriors do not accurately
reflect the joint posterior: We
cannot think of parameters
independently but they are
inherently correlated.
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Composite of previous two
figures, omitting pair plots for 
and .
Figure serves as reference for
students during collaborative
task.
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PARAMETER CORRELATION (1 / 2)
For negligible ,

where  is the sample mean and 
 is the sample covariance.

κ  0

  

κ  n = τX X⊺

= τn +Σ ,(x̄x̄⊺ )

 =x̄j n  X  

−1 ∑i=1
n

ij Σ  =jk

n  X  −  X  −  

−1 ∑i=1
n ( ij x̄j) ( ik x̄k)

We consider the 
for simplicity, but results hold
more generally.
The second equality reveals that
the posterior precision
comprises two terms: one
depending on feature means 
and one on feature covariance

.
The mean-term gives rise to
large correlation in the posterior
distribution as we will see for a
simple example on the next
slide.
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PARAMETER CORRELATION (1 / 2)
Suppose . Then

We next consider the correlation associated with the
posterior covariance .

x ∼ Normal λ,λ , I(( )⊺ )

  

κ  n = nτ   .(
1 + λ2

λ2
λ2

1 + λ2)

κ  n
−1

In this hypothetical example, the
independent bivariate features
have mean  and unit variance.
The first line follows from
substitution into the expression
on the previous slide.
Going through the algebra, we
can show that the correlation
corresponding to the precision

 is ; exercise left to the
reader.
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Plotting the correlation
coefficient between two
parameters, we observe that the
correlation is negative for non-
zero mean .
Why does this happen in the
ventilation example? Because
the features have non-zero
mean: 1. has mean 1., 2., has
mean of 0.5 (half in each
treatment group), 3. has mean of
average age, 4. has mean of
0.5 * (average age in 

aerobic group) .
This drives the strong anti-
correlation among parameters
and is an extreme case of co-
linearity.
Other correlations are due to the
covariation between features.
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Why might strong correlation be
a problem?
For Metropolis algorithms, we
need a small proposal scale
because we otherwise “step off”
the high density region. This
leads to slow exploration.
Sampling regression coefficients
iteratively using a Gibbs sampler
also yields slow exploration.
Rejection samplers have high
rejection rate because the
distribution is highly
concentrated.
Interpretation is challenging
because we cannot consider
properties of regression
coefficients independently.
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FUNNELS
Recall the Gibbs sampling steps for negligible prior

parameters:

 

β ∣ X,y, τ

τ ∣ X,y,β

∼ Normal X X X y, τ X X(( ⊺ )−1 ⊺ −1 ( ⊺ )−1)

∼ Gamma  ,  .(
2
n

2
y −Xβ y −Xβ( )⊺ ( )

)

By “negligible prior parameters”
we mean that , , and  are
very small.
Large  implies samples of 
very close to the MLE. This
implies large  because the
residuals are small. This implies

 close to the MLE, …
The inverse logic applies if we
start with small .
Walking from the “neck” of the
funnel to the “bulk” of the funnel
can take a long time.
These funnels appear a lot in
hierarchical models.
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NON-TRIVIAL GEOMETRY IS EVIL!

Non-trivial geometry messes
with all practical samplers. As a
Bayesian biostatistician, you will
likely spend a lot of your time
hunting down non-trivial
geometry in your posterior.
This may appear obscure and
technical, but understanding
these pathologies is essential for
both interpreting posteriors and
building models that can actually
be fit in practice.
We will explore funnels in more
depth for hierarchical models
and focus on reducing
correlation for the rest of the
lecture.
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DE-MEANING FEATURES
To attenuate posterior correlation, we define de-meaned

features:

 is the intercept,
 is the de-meaned aerobic

indicator,
 is the de-meaned age,

 is an interaction between de-meaned
features.

x  =i0 1
x  =i1 z  −i1 n  z  

−1 ∑i=1
n

i1

x  =i2 z  −i2 n  z  

−1 ∑i=1
n

i2

x  =i3 x  ×i1 xi2

These de-meaned features are
an attempt to eliminate the
correlation introduced by  in
the expression for the posterior
precision .
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Re-running the sampler gives us
both much more “circular” pair
plots and a much less correlated
posterior–exactly what we
wanted.
Aside: Reducing the complexity
of the geometry is the reason ML
books call for standardizing
features. Optimization, just like
sampling, is hard when the
geometry is weird.
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Let’s look at the fit. The
predictors  are unchanged
up to noise from the Gibbs
sampler.
This is a necessity: the effect of
exercise on respiratory function
cannot possibly depend on
whether we subtract a constant
from our features.
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Left panel shows pair plots for
the intercept and age coefficients
for naive and de-meaned
features.
Posterior is uncorrelated and
marginal uncertainty of
coefficients is reduced.
May be surprising but
interpreting parameters is
inherently difficult. They often do
not have direct real-world
interpretation.
Distinction between interpreting
changes in predictions (by
construction, have real-world
relevance) and changes in
parameters (“just” part of the
model) is particularly challenging
for regression because they are
so intimately coupled.
Moral of the story: Making
statements about predictions is
(almost) always meaningful.
Statements about model
parameters may or may not
have real-world relevance.
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POSTERIOR PREDICTIVE DISTRIBUTION (PPD)
The PPD for new responses  given new features  is

which simplifies to a .

We take a sampling approach and add the following to the Gibbs sampler:

 y~ X
~

p  ∣ ,y,X =(y~ X
~

) dβ dτ p  ∣ ,β, τ p β, τ ∣ X,y∫ (y~ X
~

) ( )

Student’s t-distribution

 ∣y~ ,β, τ ∼X
~

Normal β, τ I .(X
~ −1 )

Given that predictions are the
relevant quantity to focus on,
let’s consider the posterior
predictive distribution, i.e.,
density of new responses 
given new features  and data
from our study .
The first equality follows from the
law of total probability. We
forego the algebra required to
obtain the Student’s t-distribution
(see lecture 7 for the derivation
in the univariate case).
Adding a sample statement to
the Gibbs loop achieves the
same goal yet with much less
effort.
We can treat the response 
given new data  like any other
variable in the model.
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We focus on only the running
subset to avoid clutter.
The data are blue markers. The
posterior mean of predictions is
a blue line. Uncertainty
(standard deviation band) in the
predictor is the blue shaded
area.
Standard deviation in the
predictive distribution is the red
shaded area. Necessarily, the
width of the posterior predictive
is greater than the uncertainty in
the posterior predictor because,
in addition to uncertainty, it
includes sampling noise for
future observations.
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NEXT
Heteroskedastic regression.
Generalized linear models.
Stan.

No notes on this slide.
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