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RECAP
Likelihood for linear regression.
Gibbs sampler for regression coefficients  and precision

.
Strong posterior correlation for features with non-zero
mean; funnels in  pair plots.
Improved posterior sampling using de-meaned features.

β

τ

β − τ

No notes on this slide.
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TODAY
Heteroskedastic regression with unequal observation
precision.
Using Stan to draw posterior samples.
Generalized linear models.

No notes on this slide.
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HETEROSKEDASTIC REGRESSION
We have the likelihood

where precision  may depend on the observation, i.e.,

y ∼ Normal Xβ, τ ,( −1)

τ
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Heteroskedastic regression
allows precision to vary by
observation, e.g., we may have
collected data using different
instruments with different
precisions.
Precision matrices can be
generalized to include off-
diagonal elements for correlated
observations or the precision
may depend on features 
parametrically.
These more general precision
matrices are often best
formulated in terms of the
covariance  because it is
easier to think about priors.
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EXAMPLE: INCUMBENCY
We have the following election data.

year incumbent democrat_share …

1912 0 0.507 …

1912 -1 0.469 …

1912 1 0.518 …

1912 1 0.489 …

… … … …

Data are from Bayesian Data
Analysis and available .
incumbent : 0 if open, 1 if
Democrat, -1 if Republican.
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HETEROSKEDASTIC INCUMBENCY
MODEL

y  ∼i Normal x  β, τ  ( i
⊺

incumbent∣ ∣
−1 )

We use a regression model
where the precision depends on
if the incumbent seeks re-
election.
The outcome  is the Democrat
vote share.
The features  include
intercept, previous election’s
Democrat vote share, signed
incumbency indicator, interaction
term.
We de-mean all features to
improve sampling efficiency and
simplify interpretation of
parameters.
We could still obtain the
posterior for this model either in
closed form or using a custom
Gibbs sampler. But we are
spending most of our time
writing samplers, not gaining
insights from our data.
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STAN
Stan is a state-of-the-art platform for statistical modeling

and high-performance statistical computation.

This is how Stan describes itself.
The main contribution of Stan
(and other inference packages
like numpyro) is to separate
model building from inference.
Stan is (largely) a declarative
language, i.e., we write models
just like we would on paper. This
differs from R or Python which
are procedural languages.
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ANATOMY OF A STAN PROGRAM
data {
    ...
}

parameters {
    ...
}

model {
    ...
}

Each program has three core
blocks: data  declares the
model inputs, not just the data;
parameters  declares the
model parameters, including
constraints; model  contains
sampling statements.
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data {1
    int<lower=1> n, p;2
    matrix [n, p] X;3
    vector [n] y;4
    vector<lower=0, upper=1> [n] incumbent;5
}6

Line #2 declares number of
observations n  and features p .
#3-4 declare features and
responses.
#5 declares incumbency
indicator. This is technically
redundant but convenient for
declaring the model.
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parameters {1
    vector [p] coef;2
    real<lower=0> scale0, scale1;3
}4

Line #2 declares a vector of
regression coefficients matching
the number of features p .
#3 declares two observation
noise scales: scale0  if there is
no incumbent, scale  if there is
an incumbent.
We previously used precision
instead of scales. That choice
was motivated by convenience
for algebraic manipulation. In
Stan, we use scales as they are
more intuitive.
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model {1
    scale0 ~ cauchy(0, 1);2
    scale1 ~ cauchy(0, 1);3
    coef ~ normal(0, 2);4
    y ~ normal(5
        X * coef,6
        (1 - incumbent) * scale07
        + incumbent * scale18
    );9
}10

Lines #2-3 place a prior on
scales. We are no longer
restricted to conjugate priors and
use a Cauchy prior which mildly
regularizes the scales .
#4 declares a mildly informative
for regression coefficients. All
features are of order 1, and
responses vary on the order of
0.1. We expect coefficients to be
relatively small.
#6 evaluates the predictor ( *
represents matrix multiplication
in Stan by default; use .*  for
elementwise multiplication).
#7-#8 evaluates the scale
depending on the incumbent
indicator.
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Checking sampler transitions treedepth.1
Treedepth satisfactory for all transitions.2

3
Checking sampler transitions for divergences.4
No divergent transitions found.5

6
Checking E-BFMI - sampler transitions HMC potential7
  energy.8
E-BFMI satisfactory.9

10
Effective sample size satisfactory.11

12
Split R-hat values satisfactory all parameters.13

14
Processing complete, no problems detected.15

With Stan, we can simply hit
“run” and get posterior samples
(see stan-intro.R  on
Canvas for an example).
But we still need to inspect
posterior samples to validate the
inference. There is on inference
algorithm that can be trusted
blindly.
Lines #1-9 report diagnostics
specific to Stan’s sampling
algorithm.
#11 & 13 report diagnostics we
are already familiar with.
See  for details
on the split R-hat diagnostic.
These basic diagnostics look
satisfactory, and we can further
inspect the posterior.
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The variability for elections
where the incumbent seeks re-
election is much smaller than if
there is no incumbent. This is
consistent with what we might
expect: People know what
they’re getting if they vote for the
incumbent (or against them).
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The sample mean of Democrat
vote share (dotted gray line in
first panel) matches the
intercept. This inference agrees
with the results of the 

.
Posterior on  implies a 10%
point increase in Democrat vote
share from previous election
translates to ~1.5% point
increase for this election.
Posterior on  implies a ~1.2%
point incumbency advantage.
No obvious interaction from the
posterior on .
Remember that interpreting
coefficients, especially their
uncertainties, directly can be
misleading.
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generated quantities {1
    array [n] real y_repl = normal_rng(2
        X * coef,3
        (1 - incumbent) * scale04
        + incumbent * scale15
    );6
}7

We can add another block to the
Stan program: generated 
quantities . This block can be
used to generate replications of
the data, posterior predictions, or
any other quantity of interest.
Here, we replicate the data to
serve as a sanity check. If we
cannot replicate the data, there
is something wrong with the
model. We will further explore
data replication in future lectures
on model comparison.
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We are not great at replicating
the data, but we capture the
dominant factors: incumbency
and slight additional correlation
between data  and posterior
mean replications

 due to previous
vote share.
However, if we evaluate the
minimum and maximum of
replications, we find

 and
. This is

obviously wrong because vote
shares must belong to the unit
interval.
We have used the wrong model
in the sense that the support of
the likelihood is not the same as
the support of the data.
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GENERALIZED LINEAR MODELS
y ∼ AppropriateDistribution g Xβ ,…( −1 ( ) )

Generalized linear models
(GLMs) use a distribution
suitable for the data at hand
(such as a beta distribution for
vote shares) and a link function

 such that 
. The use of 

instead of  is convention and
not material. The linear predictor
passed to the link function is
often denoted .
Here,  denotes other
parameters of the likelihood,
such as overdispersion
parameters.
GLMs cannot in general be
treated analytically, but we
fortunately have access to a
flexible probabilistic
programming language: Stan.
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GLM FOR VOTE SHARE DATA

  

y
η

g η−1 ( )

∼ Beta ϕ  g η ,ϕ  g −η( incumbent∣ ∣
−1 ( ) incumbent∣ ∣

−1 ( ))

= Xβ

=  

1 + exp −η( )
1

We use a beta likelihood
because the data are
proportions,  is the linear
predictor, and the inverse link
function  is the logistic
sigmoid (equivalently, the link
function  evaluates the log
odds).

 is an overall concentration
parameter fulfilling the same role
as  in the previous example
with normal likelihood.
The above model has the
desired GLM property 

. Verify in your own time,
using the mean of the 

 and noting that
.
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Black line is the the inverse logit
function , also known as
expit.
Two colored lines show the
density of an observation for
given linear predictor  and
different concentrations .
Larger  results in more precise
likelihoods (just like the precision
of a normal likelihood).
These likelihoods have the right
support for vote shares: the unit
interval.
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data {1
    int<lower=1> n, p;2
    matrix [n, p] X;3
    vector<lower=0, upper=1> [n] y;4
    vector<lower=0, upper=1> [n] incumbent;5
}6

Data are exactly the same,
except we added a constraint
<lower=0, upper=1>  to the
data in line #4.
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parameters {1
    vector [p] coef;2
    real<lower=0> phi0, phi1;3
}4

Coefficients in line #2 remain
unchanged.
We replaced the observation
noise scales in #3 with
concentration parameters for the
beta distribution.
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transformed parameters {1
    vector [n] eta = X * coef;2
    vector [n] phi = (1 - incumbent) * phi03
        + incumbent * phi1;4
}5

We added a new block
transformed parameters
which declares, unsurprisingly,
transformed parameters.
We use the block to declare the
predictor eta  in line #2 and the
convex combination of
precisions for races with and
without incumbents seeking re-
election ( phi1  and phi0 ,
respectively). This is not strictly
required but reduces the amount
of typing later in the model.
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model {1
    phi0 ~ cauchy(0, 100);2
    phi1 ~ cauchy(0, 100);3
    coef ~ normal(0, 2);4
    y ~ beta(phi .* inv_logit(eta),5
             phi .* inv_logit(-eta));6
}7

Lines #2-3 declare priors for the
concentration parameters which
are not unlikely precisions we
encountered for normal models.
The variance of a beta
distribution is on the order of 1 
/ phi . We need a relatively
broad prior to reproduce the
small variances in the data.
The coefficient prior in #4
remains unchanged.
#5-6 declare the likelihood.
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generated quantities {1
    array [n] real<lower=0, upper=1> y_repl =2
    beta_rng(3
        phi .* inv_logit(eta),4
        phi .* inv_logit(-eta)5
    );6
}7

Generated quantities are
updated to use the right
distribution for replication.
We add an constraint to
y_repl  for explicitness
although it is not required for the
model to work.
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Comparing coefficients between
the two models is not trivial
because they are on different
scales. The normal model
operates on the percentage
point scale, the beta GLM
operates on the log odds scale.
Comparing the two models using
counterfactual predictions would
be more interpretable here. For
example, how would the national
vote share change this election if
the Democrat vote share in the
previous election was 5% points
higher.
Note: I clipped the data  below
at 0.01 and above at 0.99
because, for , the
likelihood at  or  is
zero, and the model fails to fit.
What other model could we use?
Hint: What are the raw data used
to evaluate the vote share?
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We scatter the mean replicated
vote share for each district for
the two models. As we might
expect, they yield very similar
predictions because they are fit
to the same data and the normal
model is not a terrible
approximation.
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RECAP
Heteroskedastic regression
Posterior sampling with Stan
Generalized linear models

No notes on this slide.
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HOMEWORK HINT
Sometimes link functions are equivalent to latent variable

models that can be fit using Gibbs samplers. See Hoff
section 12.1.1 and BDA3 section 16.2 for a discussion.

No notes on this slide.
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NEXT
Hierarchical models

No notes on this slide.
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