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ELECTIONS CAN BE STRESSFUL
https://www.hsph.harvard.edu/student-affairs/

Elections and the accompanying
uncertainty can be stressful and
at times scary.
The office for student affairs has
resources if you’re finding this
time difficult.
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TODAY
A bit more on Bayesian model averaging.
Checking Bayesian models.
In-class exercise on Bayesian model averaging.

Bayesian model averaging is
very appealing in theory, but
there can be some practical
challenges.
Before we can draw conclusions
using our analysis, we need to
check our models and assess if
they capture the main aspects of
the data.
There will be time to work on the
Bayesian model averaging
exercise for the lab.
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Consider the simplest of
regression models. In this
example, this is the true model
with intercept , slope , and
observation precision .
We will compare it with a
competing model that does not
include the slope , i.e., a model
that just estimates the mean
outcome.
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MODEL 1

MODEL 2

  

y ∣ x, a, b,m  1

a ∣ m  1

∼ Normal a, τ( −1)

∼ Normal 0,κ  ( a
−1)

  

y ∣ x, a, b,m  2

a ∣ m  2

b ∣ m  2

∼ Normal a + bx, τ( −1)

∼ Normal 0,κ  ( a
−1)

∼ Normal 0,κ  ( b
−1)

We consider two different
models denoted by conditioning
on model index  without a
slope or model index  with a
slope .
For , we only have a single
prior for the intercept.
For , we have a second prior
for the slope.
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We want to compare the marginal likelihood 
for the first model with the marginal likelihood

 for the second.

p y ∣ x,m  ( 1)

p y ∣ x,m  ( 2)

The marginal likelihood is called
“marginal” because it integrates
out the parameters  of the
model, i.e., 

.
Higher marginal likelihoods
indicate that the observed data
are plausible under the model.
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To avoid repeating cumbersome algebra for the two models,
we consider the general model

for design matrix , regression coefficients , and prior
precision matrix .

  

y ∣ X,θ

θ

∼ Normal Xθ, τ( −1)

∼ Normal 0,κ  ( 0
−1)

X θ

κ  0

Both models can be formulated
as a standard linear regression
model using different features.
We will use this general
formulation to evaluate the
marginal likelihood of the data 
under the two competing
models.
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MODEL MODEL m  1

  

X

θ

=    

⎝
⎛1

1

⋮
1⎠

⎞

=  (a)⊺

m  2

  

X

θ

=     

⎝
⎛1

1

⋮
1

x  1

x  2

⋮
x  n

⎠
⎞

=   (a b)⊺

Both models can be formulated
as a general linear regression
problem.
For the first, we use a design
matrix of ones such that 

.
For the second, we include the
covariates  such that 

.
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The marginal likelihood is

for posterior precision  and posterior
mean .

  

p y ∣ X,κ  ( 0) =   (
2π
τ )n/2

 

κ  ∣ n∣
κ  ∣ 0∣

× exp  ν  κ  ν  − τy y(
2
1

[ n
⊺

n n
⊺ ])

κ  =n κ  +0 τX X⊺

ν  =n τκ  X yn
−1 ⊺

Deriving the marginal likelihood
requires integrating out the
regression coefficients  and is
tedious. The details are omitted,
but it is instructive to derive

 yourself.
The first factor is due to  i.i.d.
observations in the likelihood.
The second is the ratio of how
precisely we know the
regression parameters a priori vs
a posteriori. Remember that the
determinant is the product of
eigenvalues, and it expresses an
overall notion of precision for
multivariate parameters.
The second term in the
exponential captures overall
variance in the data and is not
relevant for comparison because
it does not depend on the model.
The first in the exponential is
somewhat difficult to interpret,
however.
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Figure shows the Bayes factor
with values greater than 1
favoring the simpler model
plotted against the prior
precision  for the slope . We
set .
For very large , our prior belief
is that , and there is no
difference between the two
models. The Bayes factor is 1.
For very small , our prior belief
is that  varies wildly. A priori, the
predictions are terrible because
a slope of 100 is not implausible.
Then there is a “just right” value
for the prior precision where the
more complex model is better.
The prior is neither too restrictive
nor too permissive.
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The figure shows a few samples
of linear predictors for different
priors.
For , we recover the first
model with only the overall mean

. This model is not flexible
enough to capture the data well.
For small prior precision , the
a priori magnitude of regression
coefficients is very large. This
model is flexible enough but
gives terrible predictions a priori,
e.g.,  at  for
some samples for .
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The posterior tells a different
story, however, because the fit
improves for smaller  and
asymptotes to the MLE in the
limit .
Nevertheless, the marginal
likelihood approaches zero, and
the Bayes factor diverges,
favoring the simpler model.
Why does that happen? The
marginal likelihood quantifies
how well the model fits a priori,
i.e., before actually having been
fit to data.
The prior really matters for the
marginal likelihood, and non-
informative priors will always
aggressively favor simple
models.
So is Bayesian model
comparison using marginal
likelihoods or Bayes factors
useful? Maybe; it depends on if
you can formulate reasonable
priors.
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The posterior predictive distribution of any quantity  in
light of data  is

ϕ

y

  

p ϕ ∣ y( ) =  p ϕ ∣ y,m p m ∣ y
m

∑ ( ) ( )

=  p ϕ ∣ y,m  

m

∑ ( )
p y( )

p y ∣ m p m( ) ( )

=   p ϕ ∣ y,m p y ∣ m p m .
p y( )

1

m

∑ ( ) ( ) ( )

This matters greatly for Bayesian
model averaging because the
weight assigned to each model
is proportional to the marginal
likelihood  of the model

.
If we take the common approach
of choosing non-informative
priors for a model, it will have
zero weight.
Bayesian model averaging only
works for proper priors; it breaks
for improper priors.
But even if priors are proper, the
weights are heavily influenced
by prior choice.
In the equations to the left, the
first equality follows by the law of
total probability, the second by
Bayes theorem, and the third
because  is independent of
the model index .
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MODEL CHECKING
1. Collect data.
2. Formulate model.
3. Fit model.
4. Check model.
5. Draw conclusions.

With that aside, how would you
go about checking, extending, or
comparing models?
Apart from Bayesian model
averaging, we have largely
brushed 4. under the carpet.
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OPTIONS
Posterior predictive replication.
Posterior prediction for other data and cross-validation.
…

In light of the difficulties with the
marginal likelihood, how can we
compare different models in a
way consistent with our intuition?
E.g., we would like comparison
to be robust to the prior in the
limit of large data.
Replication generates
hypothetical data after having fit
the model. As a minimum, the
model should be able to
reproduce the data.
Posterior prediction can, for
example, reproduce other
studies in silico, and we can
compare summary statistics.
Here, we focus on posterior
predictive replication.
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EXAMPLE: NEWCOMB’S LIGHT SPEED
MEASUREMENTS

Data  are   of the time of flight of
light between mirrors taken atop Mount Washington.

y n = 66measurements

Measuring the speed of light was
all the rage in the late 19th, early
20th century.
Given the time of flight and
distance between the mirrors,
we can estimate the speed of
light.
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The figure shows a histogram of
66 measurements as deviations
from the reference value we
know today in nanoseconds.
They did amazingly well in terms
of the measurement. But there
are some outliers suggesting
faster-than-light travel between
the mirrors.
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data {1
    int n;2
    vector [n] y;3
}4

5
parameters {6
    real mu;7
    real<lower=0> sigma;8
}9

10
model {11
    y ~ normal(mu, sigma);12
    mu ~ normal(0, 100);13
    sigma ~ exponential(1e-2);14
}15

To run replication, we first need
to build a model. We use a
standard normal model 

 for 
observations  with unknown 
and .
We use a vaguely informative
prior for  (deviations much
larger than 100ns are unlikely)
and  (variation much larger
than 100ns are unlikely;
remember that the argument of
exponential  is the decay
rate, hence 1e-2 ).
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POSTERIOR PREDICTIVE
REPLICATION

Having fitted the model, we can replicate the data by
sampling from the posterior predictive distribution

p y ∣ y =( repl ) dθ p y ∣ θ p θ ∣ y .∫ ( repl ) ( )

How does replication work in
practice? We first fit he model to
get posterior samples and,
second, sample from the
likelihood for each of the
posterior samples.
The main idea is that if we fit the
model and generate predictions,
then those predictions should
look a lot like the data we fitted
to.
This is in some sense double
dipping. We assess the model
using the same data we used to
fit it.
That’s why we can only ever use
replication to test if the model
does not fit rather than being
able to confirm that it is the
“right” model.

Speaker notes

19 /  36



generated quantities {1
    vector [n] y_repl;2
    for (i in 1:n) {3
        y_repl[i] = normal_rng(mu, sigma);4
    }5
}6

Implementing replication has the
same structure as the model.
However, we need to explicitly
loop over the  observations to
sample them using
normal_rng .
We could also run the replication
outside the Stan program in R or
Python, but it is often nice to
have everything in the same
place.
Aside: Other probabilistic
programming languages like

 let you re-use the
model definition to run posterior
replications and posterior
predictions without having to
implement a generated 
quantities  block.
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The first panel shows a
histogram of the measured data.
The shaded region is the range,
i.e., min to max.
Subsequent panels show
histograms of replicated data.
We observe smaller ranges and
less skew than in the measured
data.
The simple normal model cannot
replicate some features of the
data.
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Visually assessing similarity between observed and
replicated data is challenging. We define a test statistic 

to summarize salient aspects of the data.

For Newcomb’s measurements, we consider 
because the smallest value seems like an outlier.

t y( )

t y =( ) miny

No notes on this slide.
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The figure shows a histogram of
the minimum value of replicated
data. Each sample contributing
to the histogram is an
independent replication of the
data. The black vertical line is
the minimum of the observed
data.
Replicated data here are
inconsistent with the observed
data, indicating that our model
cannot capture this particular
aspect of the data.
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Consider instead replicating the
mean of the data. This analysis
does not suggest that there is
anything wrong with the model.
Why? Because fitting a normal
model to data will faithfully
capture the mean. Test statistics
can only inform how well the
model captures a specific aspect
of the data.
Ideally, these test statistics are
something that is not directly
captured by the model. E.g., the
sample mean for a normal model
or the fraction of successes for a
Bernoulli model.
This is a great opportunity to get
your collaborators involved. They
likely have a hunch for important
aspects of the data that your
model has to be able to capture.
Together, you can translate
these aspects into test statistics
for model checking.
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EXAMPLE: COIN FLIPS
y = 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0( )⊺

Assuming independent coin flips
(heads = 1, tails = 0), we can
use a binomial model for the
number of heads or
independently consider each flip
using a Bernoulli model. The
resulting inference for the bias of
the coin  will be the same.
However, if the data correspond
to a sequence of observations,
our hypothesis of independent
samples may not be appropriate.
There are long runs of 0s and
1s.
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INDEPENDENT COIN FLIPS

  

y  ∣ θi

θ

∼ Bernoulli θ( )

∼ Uniform 0, 1( )

We first consider the standard
independent coin flip model
using a Bernoulli likelihood.
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data {1
    int n;2
    array [n] int y;3
}4

5
parameters {6
    real<lower=0, upper=1> theta;7
}8

9
model {10
    y ~ bernoulli(theta);11
}12

13
generated quantities {14
    array [n] int y_repl;15
    for (i in 1:n) {16
        y_repl[i] = bernoulli_rng(theta);17
    }18
}19

We use a standard coin-flip
model. We used an implicit
uniform prior for theta .
Just like in the light speed
measurement example, we use
generated quantities  to
replicate the data.
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We use the number of changes
from heads to tails or tails to
heads as the test statistic and
compare with the replicated
results.
The number of replicated
changes far exceed the number
of observed changes,
suggesting that our model
cannot capture this aspect.
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SEQUENTIAL MODEL

  

y  ∣ θ1

y  ∣ y  , ρi>1 i−1

θ, ρ  , ρ  { 0 1}

∼ Bernoulli θ( )

∼ Bernoulli ρ  ( y  i−1 )

∼ Uniform 0, 1( )

We explicitly consider the
sequential nature of the data to
build an improved model.
The first flip is heads with
probability . For all subsequent
flips, the outcome is heads with
probability  if the previous flip
was heads and with probability

 if the previous flip was tails.
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parameters {
    real<lower=0, upper=1> theta, rho0, rho1;
}

model {
    y[1] ~ bernoulli(theta);
    for (i in 2:n) {
        y[i] ~ bernoulli(y[i - 1] ? rho1 : rho0);
    }
}

generated quantities {
    array [n] int y_repl;
    y_repl[1] = bernoulli_rng(theta);
    for (i in 2:n) {
        y_repl[i] = bernoulli_rng(
            y_repl[i - 1] ? rho1 : rho0);
    }
}

The model is slightly more
complex, and we need to iterate
over the n  observations to both
declare the model and replicate
the data.
We use the  with
syntax borrowed from C. In
short, predicate ? a : b
evaluates to a  if the predicate
satisfied and b  otherwise.
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Before considering the replicated
data, we investigate the
parameters.
 is slightly biased towards

larger values because the first
element in the sequence was
heads. However, we only had a
single observation such that the
uncertainty remains large.

 is small, i.e., the probability of
heads given tails at the previous
step is small.  is large, and the
probability of heads given heads
at the previous step is large.
These parameters can
reproduce the long runs of 0s
and 1s.
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Replicating the number of
changes between heads and
tails again, we find that our
sequential model is much better
at capturing this statistic.
If we had instead replicated the
number or proportion of heads,
we probably would not have
been able to distinguish between
the two models. Which test
statistic you use to investigate
the model really matters.
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FREQUENTIST -VALUES
Frequentist -value is

p

p

p  =f (θ̂) p t y ≤ t y ∣ .( ( ) ( repl) θ̂)

We have still been investigating
replications and test statistics
visually. This is not feasible if
you want to assess the model
along many different dimensions.
Recap: In a frequentist setting,
we often consider the tail
probability of a test statistic to
assess model fit.
Given an estimate of parameters

 (usually the MLE), we consider
many different (hypothetical)
realizations of the data–
replications–and consider the
rank of the observed test statistic
among the population of
replicated statistics.
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POSTERIOR PREDICTIVE -VALUES
Posterior predictive -value is

p

p

  

p  B = p t y ≤ t y ∣ y( ( ) ( repl) )

= dθ p t y ≤ t y ∣ θ p θ ∣ y∫ ( ( ) ( repl) ) ( )

= dθ p  θ p θ ∣ y∫ f ( ) ( )

For posterior predictive -values,
we condition on the data 
rather than a parameter estimate
$. This approach explicitly
accounts for the residual
uncertainty in the parameters .
In a Bayesian setting, we
typically use -values to check
models instead of doing
hypothesis tests.
On the left, the first equality
follows by the law of total
probability and the second by
noting that the first conditional
distribution is the frequentist -
value.
What is the practical difference?
The sampling distribution of

 tends to have
heavier tails than 
because we consider all possible
parameter values that are
consistent with the data. Hence,
Bayesian -values tend to be
more conservative and closer to
0.5 than frequentist -values.
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Model

independent 0.010 0.029

dependent 0.244 0.438

p  f p  B

The table shows -values based
on 4,000 replications for the
independent coin flip and
sequential model. The first
column contains frequentist -
values and the second Bayesian
-values.

As we expect, the independent
coin flip model is rejected based
on the number of changes
between heads and tails.
For both models, 
because the distribution of the
test statistic conditioning on the
data has heavier tails than
conditioning on an estimate of
the parameter values.
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RECAP
Prior sensitivity for the prior predictive distribution.
Model checking and replication.
Posterior predictive -values for model checking.p

No notes on this slide.
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