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THE MISSING DATA PROBLEM
We want to learn about parameters  from observed data

, acknowledging missing data . The posterior is

How do we account for ?

θ

y ​obs y ​mis

p θ ∣ y ​ ∝( obs) p y ​ ∣ θ p θ .( obs ) ( )

y ​mis

Sometimes we can’t or choose
to observe all the data, e.g., due
to respondents not answering
survey questions, budget
constraints, or individuals
dropping out of clinical studies.
Handling missing data is all
about still making valid
inferences in light of this
challenge.
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MISSING DATA AS PARAMETERS
We treat missing data  like any other parametery ​mis

p θ,y ​ ∣ y ​ ∝( mis obs) p y ​,y ​ ∣ θ p θ .( obs mis ) ( )

Treating the missing data 
like any other parameter of the
model is the general idea.
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MISSING DATA COMPONENTS
1. Complete data likelihood .
2. Observation indicator  for each data point; 1 if observed,

0 if not.
3. Missingness model  with

parameters .
4. Joint posterior .

p y ​, y ​ ∣ θ( obs mis )
I

p I ∣ y ​, y ​, x,ϕ( obs mis )
ϕ

p θ,ϕ, y ​ ∣ y ​, I( mis obs )

The complete data likelihood
 is the likelihood

we could evaluate if we had both
the observed data  and the
missing data .
We treat the observation
indicator  as fully observed—we
generally know if we have the
data or not.
The missingness model captures
how and why the data might be
present or absent.
If we can sample from the joint
posterior, we can infer the
parameters  we are interested
in and ignore the imputed
missing data  and
parameters of the  of the
missingness model.
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MISSING DATA MECHANISMS
Missing Completely at Random (MCAR): Data are missing
independent of  and .
Missing at Random (MAR): Conditional on , data are
missing independent of .
Missing not at Random (MNAR): Missingness depends on

.

y ​obs y ​mis

y ​obs

y ​mis

y ​mis

MCAR is easy to analyze but
often not realistic.
MAR allows us to learn about

 based on  and makes
inference feasible.
MNAR leaves us with a complex
problem that can generally not
be solved without strong
assumptions.

Speaker notes

y ​mis y ​obs

5 /  34



EXAMPLE: TEST SCORES
Test scores for 1,000 students will be measured for two

years, but 200 values are missing in the second year.

A: Students who scored lower in the first year are less likely
to accept the invitation to take the test in the second year.

We consider the same dataset
(1,000 test scores in the first
year and 800 test scores in the
second year) but with different
scenarios for why the data are
missing.
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EXAMPLE: TEST SCORES
Test scores for 1,000 students will be measured for two

years, but 200 values are missing in the second year.

B: Budget constraints in the second year require reducing
the sample size. A random subset comprising 800 students

are selected to take the test.

No notes on this slide.
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EXAMPLE: TEST SCORES
Test scores for 1,000 students will be measured for two

years, but 200 values are missing in the second year.

C: Students who feel they didn’t do well on the test do not
hand in their work.

No notes on this slide.
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RESULTS FROM POLL FOR
MISSINGNESS MECHANISMS

Scenario MCAR MAR MNAR

A: not returning for second test 8% 62% 31%

B: budget constraints 85% 8% 8%

C: not handing in poor results 0% 15% 85%

Our online poll correctly
identifies the missing data
mechanisms.
Students not returning for the
second test is data MAR
because the missingness
depends on the observed test
scores from the previous year.
Budget constraints lead to data
MCAR because the budget has
nothing to do with the test scores
(unless the budget affects
teaching).
Not handing in poor results leads
to data MNAR because the
missingness depends on the
data we are trying to collect.
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THE DATA ARE …
A: missing at random, 

B: missing completely at random, 

C: missing not at random, 

p I ∣ y ​,y ​,ϕ =( obs mis )
p I ∣ y ​,ϕ( obs )

p I ∣ y ​,y ​,ϕ =( obs mis )
p I ∣ ϕ( )

p I ∣ y ​,y ​,ϕ =( obs mis )
p I ∣ y ​,ϕ( mis )

A: For data MAR, we can drop
 from the missingness

model, but we must retain the
conditioning on .
Missingness parameters  could
capture coefficients of a logistic
regression model for  given
previous test scores .
B: For data MCAR, we do not
condition on any data in the
missingness model. Missingness
parameters  might represent
the available budget.
C: For data MNAR, we have to
condition on the missing data

 we are trying to collect—
which greatly complicates our
analysis. Missingness
parameters  could capture
coefficients of a logistic
regression model for  given
unobserved test scores .
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WHY DOES THIS MATTER?
We use the following random effects model for test scores:

where  is the mean score for each year and  is the skill of
each student.

​ ​

μ ​t

a ​i

y ​it

∼ Normal 0, 1 for t ∈ {1, 2}( )

∼ Normal 0,κ for i ∈ {1, … , 1000}( 2)

∼ Normal a ​ + μ ​,σ ,( i t
2)

μ a ​i

Test scores  depend both on
the overall score  for the test
in year  (a measure of how easy
the test is) and the individual
student effect  for student  (a
measure of how skilled the
student is at answering test
questions).
The scale parameter  captures
the variance in student abilities.
If  is small, all students get
similar scores. If  is large, there
is substantial variation in ability.
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C: Students who feel they didn’t do well on the test do not
hand in their work.

Under scenario C, what
inferences might we observe if
we naively don’t account for the
missingness mechanism?
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Blue scatter are posterior
samples for a naive model that
does not account for the
missingness. Samples along the
horizontal axis come from
scenario B (MCAR due to
budget constraints) and samples
along the vertical axis come from
scenario C (NMAR due to
students not handing in results).
Mean score  for the second
year is overestimated because
low scores are missing from the
dataset.

Speaker notes

μ ​2

13 /  34



A: Students who scored lower in the first year are less likely
to accept the invitation to take the test in the second year.

Under scenario A, what
inferences might we observe if
we naively don’t account for the
missingness mechanism?
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The figure shows a scatter of
posterior standard deviation for
the inferred student effects 
against the true student effect
(which we know because the
data are simulated).
We make two observations: (a)
are larger for students who did
not complete the second test. (b)
students who did not complete
the second test have lower
ability.
Unlike in the NMAR setting,
results for both  and  are
unbiased. Intuitively, that’s
because row means of  (where
entries are available) are
unbiased estimators of student
ability and columns means of 
(where entries are available) are
unbiased estimators of overall
exam score.
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JOINT VS MARGINAL POSTERIOR
We can sample …

from the joint posterior

or from the marginal posterior

​ ​

p θ,ϕ,y ​ ∣ y ​, I( mis obs ) ∝ p I ∣ y ​,y ​,ϕ( obs mis )

× p y ​,y ​ ∣ θ p θ,ϕ( obs mis ) ( )

​

p θ ∣ y ​, I = dϕ dy ​ p θ,ϕ,y ​ ∣ y ​, I .( obs ) ∫ mis ( mis obs )

We can always sample from the
joint posterior

, but this is
often challenging because the
parameters can be high-
dimensional, especially the
missing data .
It is typically preferable to
sample from the marginal
posterior after integrating out the
missing data  and
parameters of the missingness
model . The multi-dimensional
integral is also tricky, however.
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IGNORABILITY FOR DATA MAR
Suppose data are MAR such that  and the parameters of our model  and of the
missingness model  are independent a priori, i.e., . Then, using the expression for the joint
posterior from the previous slide,

The integral with respect to  and  is separable such that

The second line follows because the first integral does not depend on  and can be absorbed by the proportionality. The
third line follows by the law of total probability.

The missing data model does not appear in the posterior, and we say the missing data mechanism is ignorable. This
means we do not need to model , but it does not mean that we can ignore that data are missing.

p I ∣ y ​,y ​,ϕ =( obs mis ) p I ∣ y ​,ϕ( obs ) θ

ϕ p θ,ϕ =( ) p θ p ϕ( ) ( )

​ ​

p θ ∣ y ​, I( obs ) = dϕ dy ​ p θ,ϕ,y ​ ∣ y ​, I∫ mis ( mis obs )

∝ dϕ dy ​ p I ∣ y ​,ϕ p y ​,y ​ ∣ θ p θ p ϕ .∫ mis ( obs ) ( obs mis ) ( ) ( )

y ​mis ϕ

​ ​

p θ ∣ y ​, I( obs ) ∝ dϕ p I ∣ y ​,ϕ p ϕ dy ​ p y ​,y ​ ∣ θ p θ[∫ ( obs ) ( )] [∫ mis ( obs mis ) ( )]
∝ dy ​ p y ​,y ​ ∣ θ p θ∫ mis ( obs mis ) ( )

∝ p y ​ ∣ θ p θ .( obs ) ( )

θ

p I ∣ …( )

No notes on this slide.
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EVALUATING THE OBSERVED-DATA
LIKELIHOOD

Assuming an ignorable missingness mechanism, we seek to
evaluate the observed data likelihood

p y ​ ∣ θ =( obs ) dy ​ p y ​,y ∣ θ .∫ mis ( obs mis )

The observed data likelihood
 looks

straightforward, but the integral
can be challenging if there are
dependencies between
observed and missing data.
If  and  are independent
conditional on the parameters ,
however, go straight ahead and
run your model without further
concerning yourself with missing
data. This is exactly what
happened in the student test
score example in scenario A.

Speaker notes

p y ​ ∣ θ( obs )

y ​obs y ​mis

θ

18 /  34



DATA AUGMENTATION IN THEORY
If the integral with respect to  is not tractable, we treat

 as a latent variable and iteratively …

1. sample parameters  from the posterior
given complete data, including imputations .

2. impute missing data  given observed data
and model parameters.

3. repeat, starting at 1.

y ​mis

y ​mis

θ ∣ y ​,y ​obs mis

y ​mis

y ​ ∣mis y ​,θobs

For non-tractable
marginalization, we can sample
from the posterior predictive
distribution  to
obtain an “imputed” dataset, i.e.,
a dataset that is consistent with
our model.
We then sample parameters 
treating  as if it was
observed.
What algorithm is this? It is a
Gibbs sampler because we
iteratively sample from the
conditionals.
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DATA AUGMENTATION IN PRACTICE
Pick initial parameters , e.g., based on a complete case
analysis.
Pick initial imputations , e.g., based on mean
imputation.
Run the sampler.
Check for convergence using MCMC diagnostics.
Use  samples for analysis and posterior predictions.
Use  samples to investigate missing data.

θ

y ​mis

θ

y ​mis

In practice, we need to initialize
the algorithm with sensible
starting values. For parameters

, this can be achieved by using
a complete case analysis
(discarding all records that do
not have complete data). For
missing data , we can use a
simple imputation method like
replacing all missing values by
the mean of observed values.
After running the sampler, we
need to check for convergence
and discard burn-in samples
because the sampler needs to
converge to the target
distribution from the initial
guesses.
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MISSING DATA ALWAYS REQUIRES A
MODEL

To sample from , we must have a model for all
missing parts, e.g., missing covariates in a regression model.

y ​ ∣mis y ​,θobs

No notes on this slide.
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EXAMPLE: DIABETES
A  comprises 442 observations of disease

progression  with a design matrix  comprising ten
features for each observation. We assume 10% of predictors

are MCAR.

diabetes dataset
y X

If we conducted a complete-case
analysis, we would have only
~150 records (34%) despite the
missingness only being 10%.
This problem becomes more
severe the more features there
are in the design matrix because
every single one of them has to
be observed to be included in a
complete-case analysis.
While a complete-case analysis
is not technically wrong here
because data are MCAR, we
lose a lot of statistical power.

Speaker notes

22 /  34

https://scikit-learn.org/1.5/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes


COMPLETE DATA MODEL

​ ​

mean of covariates μ

scale of covariates κ

covariates x ​i

regression coefficients θ

observation noise scale σ

outcomes y

∼ Normal 0, 100( )

∼ Normal ​ 0, 2+ ( )

∼ Normal μ,κ( 2)

∼ Normal 0, 100( )

∼ Normal ​ 0, 2+ ( )

∼ Normal Xθ,σ( 2)

We develop a model for every
data element, including

the outcomes  in the
second block: linear
regression conditional on
regression coefficients ,
features , and noise
variance 
features  in the first block:
independent normal model
conditional on population
mean , e.g., mean age or
blood sugar, and scale ,
e.g., age or blood sugar
variation.

Beware of change in notation:
We previously used  to denote
all data. Here we use  for
outcomes and  for features.
We could implement a Gibbs
sampler and iterate through all
parameters. But we want to
apply our Bayesian analysis
skills to real-world problem
rather than implement Gibbs
samplers. Let’s use Stan.
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data {1
    int n, p;2
    vector [n] y;3
    matrix [n, p] X_obs;4
}5

6
transformed data {7
    int n_mis = 0;8
    for (i in 1:n) {9
        for (j in 1:p) {10
            n_mis += is_nan(X_obs[i, j]);11
        }12
    }13
}14

As data , we declare number of
observations n , number of
features p , outcomes y , and
observed design matrix X_obs .
Missing elements of X_obs  are
encoded by setting them to
nan .
The transformed data
block is executed once per
program to evaluate
deterministic transformations of
the data. Here, we simply count
the number of missing elements
n_mis  in the observed design
matrix X_obs .
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parameters {1
    vector [p] mu;2
    vector<lower=0> [p] kappa;3
    vector [p] theta;4
    real<lower=0> sigma;5
    array [n_mis] real X_mis;6
}7

We declare population mean
mu  and scale kappa  for each
column of the design matrix.
The regression coefficients
theta  and sigma  are
standard for linear regression
models.
Finally, we have an array of real
numbers X_mis  with size equal
to the number of missing
elements n_mis .
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1
transformed parameters {2
    matrix [n, p] X;3
    {4
        int k = 1;5
        for (i in 1:n) {6
            for (j in 1:p) {7
                if (is_nan(X_obs[i, j])) {8
                    X[i, j] = X_mis[k];9
                    k += 1;10
                } else {11
                    X[i, j] = X_obs[i, j];12
                }13
            }14
        }15
    }16
}17

In the transformed parameters,
we construct the imputed design
matrix X  by copying from
X_obs  if data are available
(line #12) or using a latent
missing data parameter X_mis
(#9).
We use k  to keep track of the
next element we should take
from X_mis .
Everything is wrapped in braces
{ ... }  to hide the variable
k  from the transformed 
parameters  block. Stan does
not allow discrete parameters
and complains if k  is declared
outside braces.
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model {1
    mu ~ normal(0, 100);2
    kappa ~ normal(0, 2);3
    for (i in 1:n) {4
        X[i] ~ normal(mu, kappa);5
    }6

7
    theta ~ normal(0, 100);8
    sigma ~ normal(0, 2);9
    y ~ normal(X * theta, sigma);10
}11

Finally, we declare the model in
two blocks just like the model
definition a few slides earlier.
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We run the inference twice: (a)
on the observed data with
elements MCAR, (b) on the
complete data to which we have
access because we artificially
removed elements from the
design matrix for this example.
We plot regression coefficients
inferred using observed data
against regression coefficients
inferred on the complete dataset.
Error bars are posterior standard
deviations.
They largely agree, but there are
a few disagreements.
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Why is this? Our missing data
model is poor: (1) assumed a
normal model which may not be
appropriate for some features
(like sex), (2) features are
correlated and an independent
normal model for each feature is
not appropriate.
2nd is problematic: If a person
suffers from diabetes, several
blood tests are likely abnormal
and features are correlated.
We further investigate by plotting
the feature correlation as an
inset heatmap. We use colored
markers on the diagonal of the
correlation matrix to identify
features and also color the
corresponding regression
coefficients.
We observe that coefficients
corresponding to correlated
features exhibit disagreements.
The issue is likely due to us
neglecting feature correlation in
the missing data model.
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EXAMPLE: 1988 ELECTION
In 1988, Democrat Dukakis was far ahead of Republican
Bush in the polls but decisively lost the election. What

happened?

Data: Surveys of public opinion from 51 national polls
conducted by nine polling organizations over six months.
Goal: Understand temporal evolution of vote intention for
subgroups of the population.
Challenge: Not all questions were asked in all surveys and
some questions were not answered.

No notes on this slide.
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BUILDING AN IMPUTATION MODEL
There are two extremes: complete pooling (impute all
surveys together using the same model) and no pooling
(impute all surveys independently—not possible for
missing questions).
We use a hierarchical imputation model: imputations are
informed by the specific survey when possible and by the
population if not.
This can address both questions not answered (within-
survey imputation) and questions not asked (between-
survey imputation).

No notes on this slide.

Speaker notes

31 /  34



HIERARCHICAL MODEL
 is response of individual  in survey  to questions .
 is the mean response to question  in survey .

 is a feature vector for survey , e.g., time.
 is a coefficient matrix, capturing dependence of

responses on features.
 is a covariance matrix for responses, e.g., opinion of

Dukakis may be anticorrelated with opinion of Bush.

y ​siq j s q

μ ​sq q s

x ​s s

β

Ψ

​

ysi

μs

∼ Normal μ ​,Ψ( s )

∼ Normal βx ​β,σ I ​( s
2

Q)

We have a matrix of coefficients
because the mean response 
is itself a vector rather than a
scalar. The second line is a
latent regression model with
multivariate outcome.
We ignore the missing data
mechanism because the majority
of missingness is due to some
surveys not asking certain
questions rather than people not
answering questions they were
asked.
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GIBBS SAMPLER
Sample missing answers in .
Sample answer covariance .
Sample latent survey means .
Sample between-survey variance .
Sample regression matrix .

y
Ψ
μ

σ2

β

We can implement a custom
Gibbs sampler or … use Stan.
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RECAP
Missing data are just more parameters.
Distinction between MCAR, MAR, and NMAR.
Ignorability of the missingness mechanism for MAR but not
the missignness itself.
Imputation using a Gibbs sampler.
Stan model for imputed data.
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