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TODAY
Review of ignorability.
Statistical network models: , 

 and latent space models,
, …

Mechanistic network models (maybe)

Erdős–Rényi model (so�)
random geometric graphs
stochastic block models

Unlike previous topics we
studied in depth, this is an
overview of networks without
going into the technical details.
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IGNORABILITY FOR DATA MAR
Suppose data are MAR such that  and the parameters of our model  and of the
missingness model  are independent a priori, i.e., . Using the expression for the joint posterior,

The integral with respect to  and  is separable such that

The second line follows because the first integral does not depend on  and can be absorbed by the proportionality. The
third line follows by the law of total probability.

The missing data model does not appear in the posterior, and we say the missing data mechanism is ignorable. This
means we do not need to model , but it does not mean that we can ignore that data are missing.

p I ∣ y  ,y  ,ϕ =( obs mis ) p I ∣ y  ,ϕ( obs ) θ

ϕ p θ,ϕ =( ) p θ p ϕ( ) ( )

  

p θ ∣ y  , I( obs ) = dϕ dy   p θ,ϕ,y  ∣ y  , I∫ mis ( mis obs )

∝ dϕ dy   p I ∣ y  ,ϕ p y  ,y  ∣ θ p θ p ϕ .∫ mis ( obs ) ( obs mis ) ( ) ( )

y  mis ϕ

  

p θ ∣ y  , I( obs ) ∝ dϕ p I ∣ y  ,ϕ p ϕ dy   p y  ,y  ∣ θ p θ[∫ ( obs ) ( )] [∫ mis ( obs mis ) ( )]
∝ dy   p y  ,y  ∣ θ p θ∫ mis ( obs mis ) ( )

∝ p y  ∣ θ p θ .( obs ) ( )

θ

p I ∣ …( )
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SO WHY NETWORKS?
Social networks and isolation.
Contact networks and infection.
Referral networks for specialist care.
…

The surgeon general declared
social isolation a public health
emergency. Social isolation is
fundamentally a network
question.
Disease transmission in the real
world does not follow common
assumptions of homogeneous
mixing, and the structure of the
network affects transmission
dynamics.
Who gets referred to which
doctor can have a health impact.
Do you get care as fast as
possible, or does the health care
system prioritize making
connections to in-network
providers?
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WHAT IS A NETWORK?
A graph has  nodes with labels 

.
If two nodes  and  are connected,

 in the adjacency matrix .
If not connected, .

n i ∈
1, … ,n{ }

i j

A  =ij 1 A
A  =ij 0
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THE SIMPLEST OF MODELS: ERDŐS–
RÉNYI

In an Erdős–Rényi model, all edges are independent and
present with probability  such thatλ

p A ∣ λ =( )  λ 1 − λ .
i,j=1

∏
n

A  ij ( )1−A  ij

ER models were originally
developed in the context of
statistical mechanics and much
of the literature considers the
sensitivity of network properties
to the connection probability .
E.g., how large should  be for
most of the network to be
connected. How does clustering
change with increasing ?
From an inference perspective,
we can use a beta prior for the
connection probability  because
the data comprise i.i.d. binary
outcomes.
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An illustration of an ER graph
with 200 nodes and connection
probability just high-enough for a
giant connected component to
form.
At this still relatively low
connection probability, a non-
negligible number of nodes
remain isolated.
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DEGREE DISTRIBUTION OF THE
ERDŐS–RÉNYI MODEL

The degree of node  is its number of connectionsi

k =i  A  .
j=1

∑
n

ij

For an Erdos Renyi model, the
degree is binomially distributed
because the number of
connections is a sum of
independent Bernoulli trials, i.e.,

. The
term  arises because we
assume nodes cannot connect
to themselves.
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The empirical degree distribution
of the network in the previous
figure is shown in blue.
It agrees with our expectation of
a binomial degree distribution
with appropriate parameters.
This degree distribution is not
realistic because observed
degree distributions are often
very heavy-tailed. E.g.,
celebrities on social media
sometimes have millions of
followers whereas most
accounts only have a few.
Heavy-tailed degree distributions
are particularly important for
sexually transmitted infections
where “hubs” can lead to large-
scale spreading events.
While amenable to theoretical
analysis, the ER model is not
particularly useful in public
health applications.
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Like the previous figure, a
binomial degree distribution is
shown in blue.
The distribution in orange is the
degree of a 

 which is a classic model
to reproduce realistic degree
distributions.
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https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
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CONDITIONALLY INDEPENDENT
EDGE MODELS

In a conditionally independent edge model,

where  is a matrix of node features.

p A ∣ X =( )  p A  ∣ x  ,x  ,
i,j=1

∏
n

( ij i j)

X

This generalizes the i.i.d. edges
in the ER model.
We can incorporate more
interesting structure because the
presence or absence of edges
may depend on node attributes
or features.
E.g., in heterosexual contact
networks, the probability to
connect depends on sex and
generates a bipartite network.
In contacts relevant for airborne
transmission, the likelihood of
interaction may depend on age,
occupation, …
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RANDOM GEOMETRIC GRAPHS
Each node  has coordinates  in a -dimensional space,

and nodes are connected with probability  if 
for some threshold .

i x  i q

λ x  − x  <∣ i j ∣ θ

θ

Examples of random geometric
graphs include the 

 where devices may only
be able to interact if they are
within a certain distance.
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The figure shows a realization of
a soft random geometric graph
with . Nodes are not
connected if they are too far
apart. If they are close enough
(within the distance indicated by
the orange circle), they may
connect.
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LOGISTIC REGRESSION FOR
NETWORKS

where the intercept  controls overall edge density,  are
regression coefficients, and  maps node attributes  to

features.

  

A  ∣ x  ,x  ij i j

logit λ  ( ij)

∼ Bernoulli λ  ( ij)

= a + b f x  ,x  ,⊺ ( i j)

a b
f x

An example of a logistic
regression model for networks is
connections forming based on
demographics. Demographics
are represented as node
attributes , and features for the
regression may include, for
example, the age difference
between individuals.
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SOCIAL SEPARATION
Consider the social separation

which measures how isolated  is from .

 

ψ x  ,x  = logit λ  − logit λ  ,( i j) ( jj) ( ij)

i j

This measure of social
separation is based on 

.
If the probability for connection
between nodes at different
locations in the space is low
(second term), the separation is
large (remember that

).
If there is no dependence on
attributes, .
If there is heterophily, i.e., a
tendency for nodes to connect
with others who are different,
there is negative separation.
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SOCIAL ISOLATION
Consider the social isolation

which measures how separated  is from others on average.

ϕ x  =( i) dx   ψ x  ,x  p x  ∫ j ( i j) ( j)

i

Social separation is not
necessarily indicative of social
isolation.
Members of a majority group
may have large separation to
some members of society, but
their average distance to others
is small because they belong to
the majority.
Members of a minority group
may have the same large
separation to some members of
society, but their average
distance to others is large
because they do not belong to
the majority.
Isolation can be very different
depending on who you are even
if separations are the same.
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SOCIAL STRAIN
Consider the social strain

which measures how isolated people are on average.

Φ = dx   p x  ϕ x  ∫ i ( i) ( i)

This is a utilitarian definition of
social strain because we focus
on average social isolation.
One might argue that other
measures of social strain are
more appropriate.
Maybe we instead want to
minimize the isolation of the
most isolated person.
Maybe we want to instead make
sure the 75th percentile of
isolation is below some
threshold.
We would have to define another
measure in this case.
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INFERENCE FROM SURVEY DATA
We ask respondents about their demographics and also
about the demographics of their “friends.”
We treat these pairs as “cases” and randomly pair
respondents as “controls.”
If we properly account for the missing data (all the present
or absent edges we didn’t observe), we can infer the
parameters of the logistic regression model.

Connecting back to Bayesian
inference, a nice consequence
of our model-based approach is
that we naturally get uncertainty
quantification. But we first need
to infer the model parameters.
The definition of friend depends
on the exact question wording
and how respondents interpret
the question. Questions could
include “someone you discuss
important matters with” or simply
“close friend.”
Kin are usually excluded from
analyses.
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MODEL-BASED UNCERTAINTY
QUANTIFICATION

Because ,  and  are defined in terms of the model, we
automatically get uncertainty quantification.
Unlike regression coefficients, these quantities have real-
world implications and interpretation.
Even for non-parametric logistic regression, the notion of
social separation, isolation, and strain remain valid and
useful.

ψ ϕ Φ

No notes on this slide.
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For surveys in the UK (left) and
US (right), we fitted a logistic
network regression model using
demographic differences as
features.
We then embedded individuals
in a low-dimensional space
based on the separation
between them using standard
dimensionality reduction
techniques ( ).
In this space, there is clear
separation between sexes and
also a strong effect of age on
friendship formation.

Speaker notes

MDS

20 /  32

https://en.wikipedia.org/wiki/Multidimensional_scaling


STOCHASTIC BLOCK MODELS (SBMS)
For a stochastic block model, features 

indicate block membership and

where  is a  matrix of connection probabilities.

x ∈ 1, … , q{ }

A  ∼ij Bernoulli λ  ,( x  x  i j
)

λ q × q

No notes on this slide.
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The figure shows a realization of
a stochastic block model with
strong community structure (i.e.,
connections within communities
are more likely than between
communities).
The corresponding matrix of
connection probabilities  is
shown as an inset heatmap.
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Empirical network data often do
not include ground truth
community labels.
We may want to find clusters—a
task known as community
detection. E.g., proteins that
interact, genes that are co-
expressed, clusters of financial
transactions, or asset classes in
financial markets can form
communities.
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SBMS FOR COMMUNITY DETECTION
We treat both the block memberships  and connection

probabilities  as parameters of the model:
x

λ

  

A  ij

λ  rs

x  i

∼ Bernoulli λ  ( x  x  i j
)

∼ Beta 1, 1( )

∼ Uniform 1, q( )

Sometimes people introduce
another parameter 
representing the size of clusters.
Then 

.
This model favors communities
with similar sizes a priori.
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GIBBS SAMPLER FOR COMMUNITY
DETECTION

We can sample from the conditional distributions

to obtain a Gibbs sampler for community detection.

  

x ∣ A,λ

λ ∣ x,A
∼ Categorical …( )

∼ Beta …( )

Stan cannot solve this problem
because Stan relies on partial
derivatives of the density of the
target distribution with respect to
parameters of the model. That is
not possible for discrete
parameters like community
membership, and Gibbs
samplers are a more suitable
tool.

Speaker notes

25 /  32



APPLICATIONS OF NETWORK
MODELS

Answering science questions using domain-specific
models, e.g., studying gene co-expression.
Predict links using . Or identify surprising
edges.
Predict attributes using .
Sensitivity analysis for infectious disease transmission
dynamics by replicating networks using 

p A ∣ A( pred )

p x ∣ A,x( pred )

p A ∣ A( repl )

Network science often implicitly
assumes that the adjacency
matrix  is measured without
error, i.e., it represents the true
network. Even if such an
unambiguous truth exists, we
usually have measurement error.
It can be helpful to identify edges
that are missing (link prediction)
or ones that should not be
present (identifying spurious
edges).
Alternatively, we can use
network information to constrain
attributes of individuals if we
know how people connect based
on attributes.
When estimating key quantities
like epidemic size, we often
repeat stochastic simulations to
assess variability but keep the
network fixed. Replicating
networks and running
simulations can account for the
additional uncertainty due to
network variability.
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MECHANISTIC NETWORK MODELS
All of the previous models are statistical network models
with tractable likelihood.
But they cannot (easily) reproduce a number of features of
real-world data (like degree distributions or temporal
effects).
They also pose a challenge for assessing policy
interventions.
Another approach is to use mechanistic network models
whose evolution is described by a set of rules or
mechanisms.

Even if we spend time in the
same classroom together and
one of us catches an infection,
the rest of us are safe from
airborne transmission because
of the direction of time. Many
network models have no notion
of time or causality.
There are temporal statistical
network models, but mechanistic
network models are often more
intuitive.
Mechanisms vary from
extremely simple (pick a person
at random and form a
connection with probability ,
remove existing connections
with probability ) to very
complex (whole population
simulations).

Speaker notes

ρ

σ

27 /  32



SEXUAL CONTACT NETWORK MODELS
n <- 1000  # Expected number of nodes.1
mu <- 0.001  # Probability of leaving population.2
rho <- 0.1  # Prob. to form relationship.3
sigma <- 0.05  # Prob. for relationship to dissolve.4
omega0 <- 0.2  # Prob. for casual contact for singles.5
omega1 <- 0.1  # Prob. for casual contact for paired.6
T <- 10000 # Number of simulation steps.7

This code block defines
parameters for a mechanistic
network model for men who
have sex with men from
10.1016/j.epidem.2019.02.001.
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SEXUAL CONTACT NETWORK MODELS

graph <- empty()1
for (t in 1:T) {2
    graph <- remove_nodes_with_prob(graph, mu)3
    graph <- remove_steady_with_prob(graph, sigma)4
    graph <- remove_casual(graph)5

6
    n_new_nodes <- rpoisson(1, mu * n)7
    graph <- add_new_nodes(graph, n_new_nodes)8
    singles <- get_nodes_with_zero_degree(graph)9
    graph <- add_steady_with_prob(graph, singles, rho)10
    singles <- get_nodes_with_zero_degree(graph)11
    graph <- add_casual_with_prob(12
        graph, singles, omega0)13
    paired <- get_nodes_with_nonzero_degree(graph)14
    graph <- add_casual_with_prob(paired, omega1)15

16
    # Disease dynamics ...17
}18

This pseudo-code does not run
but conveys the gist of a
mechanistic network model.
The first block removes nodes
(population turnover), steady
relationships (relationships
breaking up), and all casual
contacts (we treat them as
instantaneous for each time
step).
We then add new nodes to keep
a constant expected population
size, create new steady
relationships, and add casual
contacts.
Separately, we may run disease
transmission dynamics on the
network (omitted here because
we are focusing on networks).
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BENEFITS
We can easily run sensitivity analyses.
We can simulate intervention policies.
The model is easily interpretable.

How do the results change if, for
example, there is more
population turnover or the
likelihood of casual interactions
decreases?
Intervention on the contact
network may be ethically
complex, e.g., should we, as
policy makers, try to reduce
casual contacts or reduce
concurrency of multiple steady
partners?
Intervention on the transmission
dynamics are ethically more
straightforward and can be
studied using these dynamic
network models. E.g., how does
pre-exposure prophylaxis affect
transmission in light of specific
network structure?
Mechanistic network models are
also interpretable and can be
developed in collaboration with
domain experts.
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INFERENCE CHALLENGES
Even though we use simple building blocks, the likelihood
of the model is not tractable.
Markov chain Monte Carlo methods are not applicable
because we cannot evaluate the posterior density.
Inference for these models is an open challenge and the
topic of research in simulation-based inference.
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RECAP AND FURTHER TOPICS
What are networks and why should we care?
Statistical network models: Erdős–Rényi, (so�) random
geometric graphs, conditionally independent edge
models, logistic regression, stochastic block models.
Mechanistic models, their advantages, and challenges.
Further topics: Directed vs undirected networks, temporal
networks, multilayer networks, hypergraphs, …

Directed networks may not be
reciprocated (think of follower
structure on X/Twitter) whereas
undirected networks are always
symmetric (think of friendships
on Facebook).
Multilayer networks try to
capture the same individuals
across different modalities of
interaction, e.g., at work, in a
social context, at a sports club,
on social media, … Do different
modalities complement each
other or are they substitutes?
Networks are inherently pairwise
interactions. Hypergraphs
consider higher-order
interactions, e.g., are
interactions amongst three
people qualitatively different from
three pairwise interactions
between the same people?
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