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WELCOME BACK & TODAY
Variational approaches for scalable inference.
Theoretical background.
Application to recommender systems and single-cell RNA
sequencing data.
Scaling to massive datasets with stochastic variational
inference.
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THE STANDARD PROBLEM
 is not tractable for parameters  and data .p θ ∣ y( ) θ y
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SOLUTIONS
Manual Gibbs or Metropolis-Hastings sampler.
Probabilistic programming languages with general-
purpose samplers, such as JAGS or Stan.
Variational inference.
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VARIATIONAL INFERENCE
We approximate  by a more convenient

distribution .
p θ ∣ y ≈( ) q θ( )

q

“Convenient” means anything
that makes our lives easier, e.g.,
we could use a normal
distribution to approximate the
posterior if it has a single mode.
More sophisticated but still
tractable approximations include,
for example, Gaussian 

 and .
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https://en.wikipedia.org/wiki/Mixture_model
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https://arxiv.org/abs/1505.05770v6


WHAT DOES  MEAN?
We want to minimize the 

≈
Kullback-Leibler divergence

D q θ ∥p θ ∣ y =[ ( ) ( )] dθ q θ log ​ .∫ ( ) (
p θ ∣ y( )
q θ( ) )

The KL divergence is a
discrepancy measure between
distributions. It is zero if and only
if the two distributions are
exactly the same.
It is not a  because it is
not symmetric. Changing the
order of the two distributions
changes the result.
Minimizing the KL divergence
with respect to  prioritizes that 
has small density where  has
small density.
Other discrepancy measures are
reasonable, e.g., the reversed
KL divergence, leading to

.
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https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Metric_space#Definition
https://en.wikipedia.org/wiki/Expectation_propagation


Shown in blue,  is the
true posterior for a univariate
parameter  and data . In this
simple example, we assume a
Student-t distribution with three
degrees of freedom.
Shown in orange,  is a
Gaussian approximation whose
parameters we will optimize to
approximate the true posterior
well. The distribution shown is
the unoptimized standard normal
distribution.
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The dashed line is the integrand
 of the

Kullback-Leibler divergence.
The shaded area represents the
Kullback-Leibler divergence.
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Minimizing the Kullback-Leibler
divergence results in a close
approximation of the Gaussian
variational approximation to the
Student-t distribution which is
our target.
The Kullback-Leibler divergence
for the optimized approximation
is much smaller: 0.04 vs 0.43 for
the unoptimized standard normal
distribution.
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SO WHY VARIATIONAL?
The Kullback-Leibler divergence is a functional, i.e., a map
from functions  to .

 considers minima of functionals and
is the right tool to find an optimal approximation .
Optimization is a much easier task than sampling from an
intractable distribution.

Q R
Calculus of variations

q∗
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MINIMIZING  (1 / 3)
If we don’t know , how can we minimize

D

p θ ∣ y( )

D q θ ∥p θ ∣ y =[ ( ) ( )] dθ q θ log ​ ?∫ ( ) (
p θ ∣ y( )
q θ( ) )

To minimize the KL divergence
(or an equivalent expression),
we need to express it in terms of
quantities we can evaluate.
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MINIMIZING  (2 / 3)D

​ ​

q∗ = ​D q θ ∥p θ ∣ y
q∈Q

arg min [ ( ) ( )]

= ​ dθ q θ log ​

q∈Q

arg min ∫ ( ) (
p θ ∣ y( )
q θ( ) )

= ​ dθ q θ log ​

q∈Q

arg min ∫ ( ) (
p θ ∣ y p y( ) ( )
q θ p y( ) ( ) )

The second line follows from the
definition of the Kullback-Leibler
divergence.
The third line follows from
multiplying both nominator and
denominator by the marginal
likelihood .
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MINIMIZING  (3 / 3)D

​ ​

q∗ = ​ dθ q θ log ​

q∈Q

arg min ∫ ( ) (
p θ ∣ y p y( ) ( )
q θ p y( ) ( ) )

= ​ dθ q θ log q θ + log p y
q∈Q

arg min ∫ ( ) [ ( ) ( )

− log p θ,y( )]

= ​ dθ q θ log q θ − log p θ,y
q∈Q

arg min ∫ ( ) [ ( ) ( )]

The first line is copied from the
previous slide.
The second line follows from
noting that the denominator is
the joint distribution  and
expanding the .
The third line follows from
dropping the marginal likelihood
because it does not depend on
the approximation .
In principle, we can now
evaluate all parts of the
integrand.
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VARIATIONAL LOSS
The loss functional to minimize is

But this still requires evaluating an intractable integral, and
optimizing functionals to find optimal functions is difficult.

L q θ =[ ( )] dθ q θ log q θ − log p θ,y .∫ ( ) [ ( ) ( )]
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CALCULUS OF VARIATIONS TO
“NORMAL” CALCULUS (1 / 3)

We use an approximation  from a parametric family
 with parameters .

In our example,  is the set of all normal distributions with
parameters .

q θ;ϕ( )
Q′ ϕ

Q′

ϕ = μ,σ{ 2}

No notes on this slide.
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CALCULUS OF VARIATIONS TO
“NORMAL” CALCULUS (2 / 3)

Then

where  is the chosen parametric family.

​L q θ;ϕ ⟺
q∈Q′

arg min [ ( )] ​L q θ;ϕ ,
ϕ∈R∙

arg min [ ( )]

Q′

Optimizing over distributions in
the family  is equivalent to
optimizing the parameters of
these distributions. The latter
approach is both easier and
more familiar: We “only” need to
optimize a set of parameters .
Note that the parameters  are
not model parameters. They are
parameters of the variational
approximation and do not
appear in the model definition.

Speaker notes

Q′

ϕ

ϕ

16 /  34



CALCULUS OF VARIATIONS TO
“NORMAL” CALCULUS (3 / 3)

We can evaluate gradients  and use our
favorite optimization algorithm to find optimal parameters

.

​L q θ;ϕ∂ϕ
∂ [ ( )]

ϕ∗

No notes on this slide.
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VARIATIONAL INFERENCE RECAP
Approximate posterior  by a simpler distribution

.
Minimizing the Kullback-Leibler divergence

 is equivalent to minimizing the
variational loss .
For  from a parametric family  with parameters 
such that  is tractable, we can find optimal
parameters .
Once optimized, we can draw an arbitrary number of
independent samples from .

p θ ∣ y( )
q θ( )

D q θ ∥p θ ∣ y[ ( ) ( )]
L q θ[ ( )]

q θ( ) Q′ ϕ

L q θ;ϕ[ ( )]
ϕ∗

q∗
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RECOMMENDER SYSTEMS
We have a matrix of ratings  for  users
and  with  non-missing elements (see

 dataset).
We want to predict missing ratings and recommend
movies that users are likely to rate highly.
This is the famous  with $1m prize money in
2009.
The same model is often used for single-cell RNA
sequencing data: users are cells and movies are genes.

Y ∈ Rn×m n ∼ 105

m ∼ 104 106

MovieLens 32M

Netflix Prize

No notes on this slide.
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https://grouplens.org/datasets/movielens/
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LATENT FACTOR MODEL FOR
RECOMMENDATIONS (1 / 2)

Mean ratings .
User satisfaction .
User embeddings  in  dimensions for each
user.
Movie quality .
Movie embeddings .
Rating prediction .

μ

a ∈ Rn

A ∈ Rn×r r

b ∈ Rm

B ∈ Rm×r

=Ŷ μ11 +⊺ a1 +⊺ 1b +⊺ AB⊺

No notes on this slide.
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LATENT FACTOR MODEL FOR
RECOMMENDATIONS (2 / 2)

.
.

.
.

.

 for observed ratings.

μ ∼ Normal 0, 100( 2)
a ∼ Normal 0,κ ​( a

2)
A ∼ Normal 0,κ ​( A

2 )
b ∼ Normal 0,κ ​( b

2)
B ∼ Normal 0,κ ​( B

2 )

Y ​ ∼ij Normal ​,σ(Ŷij 2)

We use standard priors for the
model parameters, e.g., diffuse
but proper prior on  and
shrinkage priors on all other
model components.

 captures variability in user
satisfaction, e.g., large 
corresponds to some users
giving very high ratings on
average and some very low
ratings on average.

 captures variability in movie
quality, e.g., large  means
there is variability on movie
quality whereas small  means
movies receive very similar
ratings on average.
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SAMPLING IS INTRACTABLE
Number of parameters is .
32m data points—evaluating the likelihood even once is
expensive.
Posterior has complex posterior due to

additive degeneracy in ,
rotational invariance of inner product .

≳ 106

Ŷ
AB⊺

Recall from  that highly
correlated posteriors lead to
poor sampler performance.
Additive degeneracies arise
because increasing  by  and
decreasing all elements of  by 
leaves the predictions
unchanged.
Even if we could evaluate the
likelihood efficiently, sampling
would still be very slow.
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https://tillahoffmann.github.io/assets/2024-09-03-bst228/lecture_12_regression_case_studies-post.pdf


VARIATIONAL INFERENCE FOR
LATENT FACTOR MODEL
We use a “mean-field” approximation

such that the variational loss  is tractable and optimize
using expectation-maximization-style algorithm: each set of

parameters , , etc. is updated in turn.

q μ,a, … ;ϕ =( ) q ​ μ;ϕ ​ q ​ a;ϕ ​ …μ ( μ) a ( a)

L

ϕ ​μ ϕ ​a

No notes on this slide.
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SO WHAT DO WE GAIN
(RECOMMENDER SYSTEM)?

: grand mean ratings without much use.
: user-specific means of how easily they are pleased.

Interesting but maybe not useful.
: movie-specific means, representing quality.
: user embeddings, indicating similar tastes.
: movie embeddings, indicating similar genres, content,

styles, etc.
: rating point estimates.

: posterior predictive for missing ratings.

μ

a

b
A
B

Ŷ
p Y ​ ∣ Y ​( mis obs)

No notes on this slide.

Speaker notes

24 /  34



SO WHAT DO WE GAIN (SINGLE-CELL
SEQUENCING, 1 / 2)?

: overall expression level.
: cell-specific expression, indicating overall activity.
: gene-specific expression, indicating how common a

gene is.
: cell embeddings, indicating similar expression profiles,

e.g., different tissue types, different individuals in mixed
data, different pathologies.

: gene embeddings, indicating co-expression.

μ

a
b

A

B

We can “search” in the
embedding space to find
interesting genes. Suppose we
can identify a subset of
cancerous cells. Then we can
rank all the genes by how well
they “align” (in the inner product
sense) with the embeddings of
the cancerous cells to generate
hypotheses for genes associated
with pathologies.
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SO WHAT DO WE GAIN (SINGLE-CELL
SEQUENCING, 2 / 2)?

: expression point estimates.
: posterior predictive for unobserved

expressions.

Ŷ
p Y ​ ∣ Y ​( mis obs)

We can use the posterior
predictive distribution for
unobserved cell-gene pairs to
detect anomalous expressions.
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SCALING TO MASSIVE DATASETS
Datasets are growing rapidly in all domains. Netflix now
has 280m subscribers and 
—11.4m years.
Even fitting these data into memory is challenging.
How can we use all the data without needing enormous
compute clusters—and a lot of money?

100bn hours of content viewed

The number of hours watched
on Netflix is almost 0.1% of the
age of the universe (13.8bn
years).
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STOCHASTIC VARIATIONAL
INFERENCE (1 / 5)

Suppose observations are conditional independent given
parameters, i.e.,

p y ∣ θ =( ) ​ p y ​ ∣ θ .
i=1

∏
n

( i )

No notes on this slide.
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STOCHASTIC VARIATIONAL
INFERENCE (2 / 5)

Then the variational loss simplifies to

​ ​

L = dθ q θ log ​ − ​ log p y ​ ∣ θ∫ ( ) [ (
p θ( )
q θ( ) )

i=1

∑
n

( i )]
= D q θ ∥p θ − ​ dθ q θ log p y ​ ∣ θ .[ ( ) ( )]

i=1

∑
n

∫ ( ) ( i )

No notes on this slide.
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STOCHASTIC VARIATIONAL
INFERENCE (3 / 5)

The first term  is the Kullback-Leibler
divergence between approximation and prior. It is
independent of sample size.
The second term  is
a simple sum over the dataset.

D q θ ∥p θ[ ( ) ( )]

K = ​ dθ q θ log p y ​ ∣ θ∑i=1
n ∫ ( ) ( i )

Sanity check: If there are no
data, we try to approximate the
prior by minimizing

.
Sanity check: If  is large, we
maximize an expression that
looks a lot like the log likelihood
—the data dominate the
inference and overwhelm the
prior.
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STOCHASTIC VARIATIONAL
INFERENCE (4 / 5)

We can construct an unbiased estimator

of  using a subset  of the data.

=K̂ ​ ​ dθ q θ log p y ​ ∣ θ
B∣ ∣
n

i∈B

∑ ∫ ( ) ( i )

K B

We take random subsets  of
the data.
Because  is a sum over i.i.d.
samples,  is an unbiased
estimator.
The mean and variance grow
linearly with the size  of the
subset, and thus the relative
error scales as .
Often using small subsets (also
called mini-batches) is sufficient
because increasing the batch
size has diminishing returns due
to the square-root scaling of the
relative error.
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STOCHASTIC VARIATIONAL
INFERENCE (5 / 5)

We can use  on mini-batches of the data instead of  to
evaluate gradients and run the optimization.
The noise from mini-batch sampling gives rise to
stochastic variational inference.
The training regime for these approximate posteriors is
just like any other deep learning training run.

K̂ K

No notes on this slide.
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VARIATIONAL INFERENCE IN
PRACTICE (1 / 2)

Use a probabilistic programming language like Stan, pyro,
or numpyro to do most of the work for you.
Often the variational loss is not tractable, but we can
approximate gradients by sampling from the approximate
posterior  similar to the mini-batch loss. This is called
black-box variational inference.

q

No notes on this slide.
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VARIATIONAL INFERENCE IN
PRACTICE (2 / 2)

Like all machine learning training, getting the
hyperparameters of the optimizer right and diagnosing
convergence is tricky.
Remember that the variational approximation is … an
approximation. It often gets tail behavior wrong.
Variational inference is great for scalable prediction but
not suitable if the tail probabilities of credible intervals
are important.

For example, variational
inference may be useful for
hypothesis generation from large
single-cell sequencing data. But
it is likely unsuitable for
estimating the probability of rare
side effects of a drug.
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