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TODAY
Case study.
Project work.

This lecture demonstrates how
the different topics you’ve
learned about fit together.
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The discussion is based on 
 on shedding

of SARS-CoV-2 RNA in feces,
which is important for
interpreting data from
wastewater-based epidemiology.
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https://doi.org/10.1093/jrsssc/qlad011
https://doi.org/10.1093/jrsssc/qlad011


What is wastewater-based
epidemiology (WBE)? Collecting
and analyzing biomarkers
wastewater samples to learn
about the state of public health.
Samples are typically collected
at the pipe entering wastewater
treatment works, but samples
can also be collected upstream
(e.g., manholes) for more
granular spatial analysis or
downstream (e.g., sludge from
sedimentary tanks during the
treatment process).
Analytes include markers of
infectious diseases (e.g., viral
RNA), metabolites of
prescription and illicit drugs, and
more.

Speaker notes

4 /  27



QUESTIONS FOR WASTEWATER-
BASED EPIDEMIOLOGY

In the context of SARS-CoV-2, we might want to answer the
following questions.

1. How many SARS-CoV-2 RNA copies are shed on average?
2. Does everyone shed RNA?
3. How does shedding vary over time?
4. …

1. Knowing how many copies are
shed is fundamental for trying to
estimate disease prevalence.

2. If not everyone sheds viral RNA,
we need to correct prevalence
estimates. A bimodal distribution
of shedding behavior can also
inform disease characteristics.
E.g., do only some people have
enteric infections?

3. If most shedding happens during
the early infection course, WBE
data can be leading indicator.
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The figure shows viral RNA
concentrations against days past
symptom onset in individual
samples collected from different
patients, i.e., we have
longitudinal data. Data are
extracted from three early
studies indicated by different
colors.
Horizontal lines indicate the limit
of quantification which vary
across studies.
Concentration appears to
decline over time, but the data
are noisy. Early shedding is
poorly constrained because data
from hospitalized patients.
We cannot use simple
summaries. E.g., if there are
many samples per patient, the
patient will dominate the
summaries.
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The figure illustrates a potential
model. Each color represents a
different patient. We use a
shared temporal profile common
to all patients and a common
within-patient variance between
samples. Overall shedding levels
may vary between patients.
The “green patient” has all
positive samples over the study
period. “Orange” has initial
positive and later negative
samples. “Blue” has all negative
samples because they were
admitted late in the infection
course.
Cf. lecture 21 on missing data
and censored data here. What is
the missing data mechanism?
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SHEDDING MODEL

​ ​

μ ​ ∣ M ,S,Qi ∼ GeneralizedGamma M ,S,Q( )

We have random effects for
each patient  from a generalized
gamma distribution (cf. lectures
14-16 on hierarchical models).
We could use any distribution
with positive support, e.g., log-
normal, gamma, Weibull
(cf. early lectures on choosing
the right likelihood).
We use the generalized gamma
distribution because it includes
the other distributions as special
cases and allows us to control
different tail shapes. We will get
back to the importance of this
choice.
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SHEDDING MODEL

​ ​

μ ​ ∣ M ,S,Qi

p x ∣ μ ​,σ, q, θ( ij i )

∼ GeneralizedGamma M ,S,Q( )

= ​ ​{f x ​ ∣ μ ​ × g t ,σ, q( ij i ( ij) ) if x ​ > θij

We have  observation  for
patient  above the limit of
quantification .

 is the density of a generalized
gamma distribution but with
different scale  and shape 
than the population-level
distribution.
The location parameter is 

 with temporal shedding
profile , where  is the time at
which sample  was collected
from patient .
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SHEDDING MODEL

​ ​

μ ​ ∣ M ,S,Qi

p x ∣ μ ​,σ, q, θ( ij i )

∼ GeneralizedGamma M ,S,Q( )

= ​ ​{f x ​ ∣ μ ​ × g t ,σ, q( ij i ( ij) )
F θ ∣ μ ​ × g t ​ ,σ, q( i ( ij) )

if x ​ > θij

otherwise

For samples below the limit of
quantification (LOQ) , we
evaluate the cumulative
distribution function  at the
LOQ: We only know that
samples are less than the LOQ.
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Why do we use the more
complex generalized gamma
distribution instead of a simpler
distribution like the log-normal?
The figure shows 12 samples
from the first patient of Wölfel et
al. (2020) as a rug plot with jitter
to distinguish the samples.
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After fitting three distributions
using maximum likelihood
estimation, we observe very
different densities because the
shape is fully determined by the
functional form.
Log-normal has more mass at
low values but also heavier tail;
gamma is most concentrated
and has light tails.
Cf. early lectures where we
discussed that the support of the
data does not uniquely
determine the “correct”
likelihood.
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What are the predicted means?
Predicted mean of log-normal is
almost 10x larger compared with
gamma.
Predicted mean is almost as
large as the largest observed
value. For some datasets, the
predicted mean is larger than the
maximum of the dataset.
Ironically, adding a measurement
at 10 gc/mL would increase the
predicted mean to 
because log-normal scale
increases.
Means are all about the tails. But
we need the mean for WBE
applications because the
collected data is a mixture of
fecal matter from many people.
Choosing a distribution is a
commitment to the tail shape
which we cannot know a priori.
By using a generalized gamma
distribution, we are still
committing to a functional form
here, but it is more flexible.
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The figure shows a model fit
using Monte Carlo samples in
three replicates for different
seeds (cf. lecture 8 on MCMC
and 10 on diagnostics).
Stan was not suitable because
the posterior had bad geometry
(cf. lecture 12 regression case
study). We used a different but
slow sampler which requires
running at scale (cf. Dr
Schwartz’s guest lecture on
distributed computing).
We did not use variational
inference (cf. lecture 27)
because we really care about
tails: super-shedders.
Here, we used an exponential
shedding profile and find a find a
half-life of 1.5 days (that’s half
life of the profile not half life of
RNA degradation).
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TEMPORAL SHEDDING PROFILES
Exponential: 
Gamma: 
Teunis et al.: 

exp −λ t − t ​( ( 0))
t − t ​ exp −b t − t ​( 0)a−1 ( ( 0))

1 − exp −a t − t ​ exp −b t − t ​[ ( ( 0))] ( ( 0))

The exponential profile is really
just a generalized linear model
with log link function and
generalized gamma likelihood
(cf. lecture 13).
The exponential profile is of
course not reasonable because
it suggests very large shedding
long before symptom onset.
As a sensitivity analysis, we
consider different shedding
profiles from the literature,
including the shape of a gamma
likelihood and an exponential
rise and decay profile.
The two other profiles have a
third parameter which we need
to infer: The time  at which
shedding starts relative to
symptom onset.
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The left panel shows samples of
gamma shedding profiles
consistent with the data in blue
and the exponential profile in
orange. The data cannot
constrain the early shedding
profile (because we do not have
any early data). Consequently, 
and the time at which shedding
peaks cannot be learned from
the data we have.
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We observe the same pattern for
the exponential rise and decay
profile.
There are publications that make
claims about peak shedding and
time of peak shedding. But those
claims are entirely assumption
based, e.g.,  such that
shedding starts at symptom
onset.
We cannot constrain the peak
without collecting early shedding
data, unless we have very good
mechanistic models to inform the
shedding profile.
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SUB-POPULATION MODEL
For patients with all-negative samples,

​ ​

p x ​ ∣ μ ​,σ, q, ρ( i∙ i ) = 1 − ρ + ρ ​F θ ∣ μ ​ × g t ​ ,σ, q .( )
j=1

∏
m ​i

( i ( ij) )

We consider a sub-population of
people who fundamentally do
not shed. The probability to shed
is .
For a patient with all negative
samples, they either belong to
the non-shedding population or
each sample is below the LOQ.
Fitting this model, the highest
posterior density interval
includes , and we find no
evidence for a subpopulation of
people who do not shed at all.
The small proportion of positive
samples is likely an artifact of
collecting data from hospitalized
patients late in the infection
course.
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POSTERIOR PREDICTIVE
REPLICATION

To check the model, we sample from the posterior predictive
distribution to replicate

, number of positive samples,
, number of patients with at least one positive

sample,
, sample mean of positive samples.

m ​(+)
rep

n ​(+)
rep

x̄rep

We use quantities for replication
that are not directly related to
parameters of the model.
Otherwise, we are likely to
replicate the summaries well
even if the model is poor
(cf. lecture 20 on model
checking).
Remember, replication can only
tell us if a model is bad—not if it
is good.
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All models can explain the
number of positive samples and
number of patients with at least
one positive sample.
Temporal models with
exponential profiles have smaller
variance because variation is
explained by the profile, not
marginal variance as is the case
for a model with a constant
shedding profile.
Models with a sub-population of
non-shedders have larger
variance because binary
indicators for shedding affects all
samples of the patient jointly.
Sub-population models have
higher replicated mean because
the mean isn’t “pulled down” as
far to explain the negative
samples.
Temporal models predict slightly
higher mean concentration
because of abundant early
shedding.
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OUT-OF-SAMPLE PREDICTION
Two studies reported summary statistics without microdata.

Kim et al. (2020) collected 129 samples from 38 patients;
reported maximal concentration.
Ng et al. (2020) collected 81 samples from 21 patients;
reported maximal concentration and median number of
positive samples per patient.

We replicated these studies in silico to predict summary
statistics.

We assume one sample from
each patient and the remainder
of samples are randomly
allocated to patients.
Kim also reported number of
positive and negative samples
but we were not able to replicate
the statistics because they do
not report the limit of detection.
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Studies without sample-level
information can be replicated
using the model which gives us
confidence: The model can
make predictions out of sample.
The maximal observed value for
Kim et al. is larger than Ng et
al. That is expected: The larger
the number of samples, the
more likely we are to observe a
very large value.
We can also replicate other
summary statistics, such as the
slightly unusual median number
of positive samples per patient
reported by Ng et al.
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INVESTIGATING THE TAILS
The tail of the generalized gamma distribution is controlled

by the shape parameter .

 recovers the log-normal distribution.
 recovers the Weibull distribution.
 recovers the gamma distribution.

Q

Q = 0
Q = 1
Q = S

This is an example of continuous
model expansion, an alternative
to discrete model selection and
Bayesian model averaging
(cf. lecture 19).
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The patient scale  is much
smaller for models with temporal
shedding profile because the
profile captures a lot of the
variance and the residuals are
smaller.
The predicted mean increases
with smaller shape  because
the tails get heavier (up to 
 which corresponds the log-

normal distribution).
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CONCLUSIONS
Modeling is essential to constrain viral RNA shedding.
Early shedding behavior can reconcile clinical and
wastewater-based data.
Data are consistent with everyone shedding but to
different degrees.

No notes on this slide.

Speaker notes

25 /  27



WHAT’S NEXT?
Promote and expand the .
More flexible non-parametric shedding profiles, e.g., using
Gaussian processes.
Random effects for demographics, studies, gene targets,
viral variants, …

Shedding Hub

No notes on this slide.
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LEARNINGS
Know your data. Model the most “raw” data you can get your hands on. But not so
raw that you can’t make progress.
Bayesian hierarchical models are a great “language” for building complex models
from simple building blocks.
Really understanding your model matters for both science and computation.
Model checking is essential!
Validation on held-out data gives confidence.
Interpreting parameters can be challenging; interpreting the posterior predictive
distribution is often easier and more relevant.
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